
Bhatia, Pia; Shin, Trey T.; Kavetsky, Kyril; Sailors, Benjamin N.; Siokos, George; Uy-Tioco, Alexandra Sofia; Keneipp, Rachael N.; Gusdorff, Jordan A.; Bassett, Lee C.; Drndić, Marija
In: Micron, vol. 189, pp. 103747, 2024.
@article{Bhatia2024,
title = {A tale of two transfers: characterizing polydimethylsiloxane viscoelastic stamping and heated poly bis-A carbonate transfer of hexagonal boron nitride},
author = {Pia Bhatia and Trey T. Shin and Kyril Kavetsky and Benjamin N. Sailors and George Siokos and Alexandra Sofia Uy-Tioco and Rachael N. Keneipp and Jordan A. Gusdorff and Lee C. Bassett and Marija Drndić},
url = {https://www.sciencedirect.com/science/article/pii/S0968432824001641#sec0080},
doi = {10.1016/j.micron.2024.103747},
year = {2024},
date = {2024-11-26},
urldate = {2024-11-26},
journal = {Micron},
volume = {189},
pages = {103747},
abstract = {Two-dimensional (2D) materials have many applications ranging from heterostructure electronics to nanofluidics and quantum technology. In order to effectively utilize 2D materials towards these ends, they must be transferred and integrated into complex device geometries. In this report, we investigate two conventional methods for the transfer of 2D materials: viscoelastic stamping with polydimethylsiloxane (PDMS) and a heated transfer with poly bis-A carbonate (PC). We use both methods to transfer mechanically-exfoliated flakes of hexagonal boron nitride onto silicon nitride (SiNx) substrates and characterize the resulting transfers using atomic force microscopy (AFM), aberration-corrected scanning transmission electron microscopy (AC-STEM) and electron energy loss spectroscopy (EELS). We find that both transfer methods yield flakes with significant and comparable residue (within the limitations of our study on eight samples). Qualitative interpretation of EELS maps demonstrates that this residue is comprised of silicon, carbon and oxygen for both transfer methods. Quantitative analysis of AC-STEM images reveals that the area covered in residue is on average, slightly lower for PDMS transfers (31 % ± 1 %), compared to PC transfers (41 % ± 4 %). This work underscores the importance of improving existing transfer protocols towards applications where cleaner materials are critical, as well as the need for robust methods to clean 2D materials.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Gusdorff, Jordan A.; Bhatia, Pia; Shin, Trey T.; Uy-Tioco, Alexandra Sofia; Sailors, Benjamin N.; Keneipp, Rachael N.; Drndić, Marija; Bassett, Lee C.
Correlated Structural and Optical Characterization of Hexagonal Boron Nitride Journal Article Forthcoming
In: arXiv:2411.14408, Forthcoming.
@article{Gusdorff2024,
title = {Correlated Structural and Optical Characterization of Hexagonal Boron Nitride},
author = {Jordan A. Gusdorff and Pia Bhatia and Trey T. Shin and Alexandra Sofia Uy-Tioco and Benjamin N. Sailors and Rachael N. Keneipp and Marija Drndić and Lee C. Bassett},
url = {https://arxiv.org/abs/2411.14408},
doi = {10.48550/arXiv.2411.14408},
year = {2024},
date = {2024-11-21},
urldate = {2024-11-21},
journal = {arXiv:2411.14408},
abstract = {Hexagonal boron nitride (hBN) hosts quantum emitters that exhibit single-photon emission and spin-dependent fluorescence at room temperature. These features make hBN a promising platform for quantum sensing and photonics. Despite many investigations of their optical properties, the emitters' chemical structure remains unclear, as does the role of contamination at surfaces and interfaces in forming the emitters or modifying their properties. We prepare hBN samples that are compatible with both confocal photoluminescence microscopy (PL) and transmission electron microscopy (TEM), and we use those techniques to investigate correlations between fluorescent emission, flake morphology, and surface residue. We find that the microscopy techniques themselves induce changes in hBN's optical activity and residue morphology: PL measurements induce photobleaching, whereas TEM measurements alter surface residue and emission characteristics. We also study the effects of common treatments — annealing and oxygen plasma cleaning — on the structure and optical activity of hBN. The results illustrate the power and importance of correlative studies to elucidate aspects of microscopic mechanisms that influence hBN's functionality as a host for quantum emitters and spin defects.},
keywords = {},
pubstate = {forthcoming},
tppubtype = {article}
}

Gali, Adam; Schleife, André; Heinrich, Andreas J.; Laucht, Arne; Schuler, Bruno; Chakraborty, Chitraleema; Anderson, Christopher P.; Déprez, Corentin; McCallum, Jeffrey; Bassett, Lee C.; Friesen, Mark; Flatté, Michael E.; Maurer, Peter; Coppersmith, Susan N.; Zhong, Tian; Begum-Hudde, Vijaya; Ping, Yuan
Challenges in advancing our understanding of atomic-like quantum systems: Theory and experiment Journal Article
In: MRS Bulletin, vol. 49, pp. 256-276, 2024.
@article{Gali2024,
title = {Challenges in advancing our understanding of atomic-like quantum systems: Theory and experiment},
author = {Adam Gali and André Schleife and Andreas J. Heinrich and Arne Laucht and Bruno Schuler and Chitraleema Chakraborty and Christopher P. Anderson and Corentin Déprez and Jeffrey McCallum and Lee C. Bassett and Mark Friesen and Michael E. Flatté and Peter Maurer and Susan N. Coppersmith and Tian Zhong and Vijaya Begum-Hudde and Yuan Ping },
url = {https://link.springer.com/article/10.1557/s43577-023-00659-5},
doi = {10.1557/s43577-023-00659-5},
year = {2024},
date = {2024-02-14},
journal = {MRS Bulletin},
volume = {49},
pages = {256-276},
abstract = {Quantum information processing and quantum sensing is a central topic for researchers who are part of the Materials Research Society and the Quantum Staging Group is providing leadership and guidance in this context. We convened a workshop before the 2022 MRS Spring Meeting and covered four topics to explore challenges that need to be addressed to further promote and accelerate the development of materials with applications in quantum technologies. This article captures the discussions at this workshop and refers to the pertinent literature.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Fishman, Rebecca E. K.; Patel, Raj N.; Hopper, David A.; Huang, Tzu-Yung; Bassett, Lee C.
Photon emission correlation spectroscopy as an analytical tool for quantum defects Journal Article
In: PRX Quantum, vol. 4, pp. 010202, 2023.
@article{Fishman2021,
title = {Photon emission correlation spectroscopy as an analytical tool for quantum defects},
author = {Rebecca E. K. Fishman and Raj N. Patel and David A. Hopper and Tzu-Yung Huang and Lee C. Bassett},
url = {https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.4.010202
https://arxiv.org/abs/2111.01252},
doi = {10.1103/PRXQuantum.4.010202},
year = {2023},
date = {2023-03-06},
journal = {PRX Quantum},
volume = {4},
pages = {010202},
abstract = {Photon emission correlation spectroscopy has a long history in the study of atoms, molecules, and, more recently, solid-state quantum defects. In solid-state systems, its most common use is as an indicator of single-photon emission, a key property for quantum technology. However, photon correlation data can provide a wealth of information about quantum emitters beyond their single-photon purity−information that can reveal details about an emitter's electronic structure and optical dynamics that are hidden by other spectroscopy techniques. We present a standardized framework for using photon emission correlation spectroscopy to study quantum emitters, including discussion of theory, data acquisition, analysis, and interpretation. We highlight nuances and best practices regarding the commonly used g(2)(τ=0)<0.5 test for single-photon emission. Finally, we illustrate how this experimental technique can be paired with optical dynamics simulations to formulate an electronic model for unknown quantum emitters, enabling the design of quantum control protocols and assessment of their suitability for quantum information science applications.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2024

Bhatia, Pia; Shin, Trey T.; Kavetsky, Kyril; Sailors, Benjamin N.; Siokos, George; Uy-Tioco, Alexandra Sofia; Keneipp, Rachael N.; Gusdorff, Jordan A.; Bassett, Lee C.; Drndić, Marija
In: Micron, vol. 189, pp. 103747, 2024.
Abstract | Links | BibTeX | Tags: 2-dimensional systems, Materials Physics, nanocrystals
@article{Bhatia2024,
title = {A tale of two transfers: characterizing polydimethylsiloxane viscoelastic stamping and heated poly bis-A carbonate transfer of hexagonal boron nitride},
author = {Pia Bhatia and Trey T. Shin and Kyril Kavetsky and Benjamin N. Sailors and George Siokos and Alexandra Sofia Uy-Tioco and Rachael N. Keneipp and Jordan A. Gusdorff and Lee C. Bassett and Marija Drndić},
url = {https://www.sciencedirect.com/science/article/pii/S0968432824001641#sec0080},
doi = {10.1016/j.micron.2024.103747},
year = {2024},
date = {2024-11-26},
urldate = {2024-11-26},
journal = {Micron},
volume = {189},
pages = {103747},
abstract = {Two-dimensional (2D) materials have many applications ranging from heterostructure electronics to nanofluidics and quantum technology. In order to effectively utilize 2D materials towards these ends, they must be transferred and integrated into complex device geometries. In this report, we investigate two conventional methods for the transfer of 2D materials: viscoelastic stamping with polydimethylsiloxane (PDMS) and a heated transfer with poly bis-A carbonate (PC). We use both methods to transfer mechanically-exfoliated flakes of hexagonal boron nitride onto silicon nitride (SiNx) substrates and characterize the resulting transfers using atomic force microscopy (AFM), aberration-corrected scanning transmission electron microscopy (AC-STEM) and electron energy loss spectroscopy (EELS). We find that both transfer methods yield flakes with significant and comparable residue (within the limitations of our study on eight samples). Qualitative interpretation of EELS maps demonstrates that this residue is comprised of silicon, carbon and oxygen for both transfer methods. Quantitative analysis of AC-STEM images reveals that the area covered in residue is on average, slightly lower for PDMS transfers (31 % ± 1 %), compared to PC transfers (41 % ± 4 %). This work underscores the importance of improving existing transfer protocols towards applications where cleaner materials are critical, as well as the need for robust methods to clean 2D materials.},
keywords = {2-dimensional systems, Materials Physics, nanocrystals},
pubstate = {published},
tppubtype = {article}
}

Gali, Adam; Schleife, André; Heinrich, Andreas J.; Laucht, Arne; Schuler, Bruno; Chakraborty, Chitraleema; Anderson, Christopher P.; Déprez, Corentin; McCallum, Jeffrey; Bassett, Lee C.; Friesen, Mark; Flatté, Michael E.; Maurer, Peter; Coppersmith, Susan N.; Zhong, Tian; Begum-Hudde, Vijaya; Ping, Yuan
Challenges in advancing our understanding of atomic-like quantum systems: Theory and experiment Journal Article
In: MRS Bulletin, vol. 49, pp. 256-276, 2024.
Abstract | Links | BibTeX | Tags: Materials Physics, quantum information science
@article{Gali2024,
title = {Challenges in advancing our understanding of atomic-like quantum systems: Theory and experiment},
author = {Adam Gali and André Schleife and Andreas J. Heinrich and Arne Laucht and Bruno Schuler and Chitraleema Chakraborty and Christopher P. Anderson and Corentin Déprez and Jeffrey McCallum and Lee C. Bassett and Mark Friesen and Michael E. Flatté and Peter Maurer and Susan N. Coppersmith and Tian Zhong and Vijaya Begum-Hudde and Yuan Ping },
url = {https://link.springer.com/article/10.1557/s43577-023-00659-5},
doi = {10.1557/s43577-023-00659-5},
year = {2024},
date = {2024-02-14},
journal = {MRS Bulletin},
volume = {49},
pages = {256-276},
abstract = {Quantum information processing and quantum sensing is a central topic for researchers who are part of the Materials Research Society and the Quantum Staging Group is providing leadership and guidance in this context. We convened a workshop before the 2022 MRS Spring Meeting and covered four topics to explore challenges that need to be addressed to further promote and accelerate the development of materials with applications in quantum technologies. This article captures the discussions at this workshop and refers to the pertinent literature.},
keywords = {Materials Physics, quantum information science},
pubstate = {published},
tppubtype = {article}
}
2023

Fishman, Rebecca E. K.; Patel, Raj N.; Hopper, David A.; Huang, Tzu-Yung; Bassett, Lee C.
Photon emission correlation spectroscopy as an analytical tool for quantum defects Journal Article
In: PRX Quantum, vol. 4, pp. 010202, 2023.
Abstract | Links | BibTeX | Tags: First-principles calculations, Materials Physics, Optics, photon emission correlation spectroscopy, photon statistics, point defects, quantum defects
@article{Fishman2021,
title = {Photon emission correlation spectroscopy as an analytical tool for quantum defects},
author = {Rebecca E. K. Fishman and Raj N. Patel and David A. Hopper and Tzu-Yung Huang and Lee C. Bassett},
url = {https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.4.010202
https://arxiv.org/abs/2111.01252},
doi = {10.1103/PRXQuantum.4.010202},
year = {2023},
date = {2023-03-06},
journal = {PRX Quantum},
volume = {4},
pages = {010202},
abstract = {Photon emission correlation spectroscopy has a long history in the study of atoms, molecules, and, more recently, solid-state quantum defects. In solid-state systems, its most common use is as an indicator of single-photon emission, a key property for quantum technology. However, photon correlation data can provide a wealth of information about quantum emitters beyond their single-photon purity−information that can reveal details about an emitter's electronic structure and optical dynamics that are hidden by other spectroscopy techniques. We present a standardized framework for using photon emission correlation spectroscopy to study quantum emitters, including discussion of theory, data acquisition, analysis, and interpretation. We highlight nuances and best practices regarding the commonly used g(2)(τ=0)<0.5 test for single-photon emission. Finally, we illustrate how this experimental technique can be paired with optical dynamics simulations to formulate an electronic model for unknown quantum emitters, enabling the design of quantum control protocols and assessment of their suitability for quantum information science applications.},
keywords = {First-principles calculations, Materials Physics, Optics, photon emission correlation spectroscopy, photon statistics, point defects, quantum defects},
pubstate = {published},
tppubtype = {article}
}
Select publications before 2014
- “All-optical control of a solid-state spin using coherent dark states”, C. G. Yale, B. B. Buckley, D. J. Christle, G. Burkard, F. J. Heremans, L. C. Bassett, and D. D. Awschalom, Proc. Natl. Acad. Sci. USA 110, 7595 (2013).
- “Quantum spintronics: Engineering and manipulating atom-like spins in semiconductors”, D.D. Awschalom, L.C. Bassett, A.S. Dzurak, E.L. Hu and J.R. Petta, Science 339, 1174 (2013).
Related article: “The Future of Quantum Information Processing”, J. Stajic, Science 339, 1163 (2013).
- “Engineering and quantum control of single spins in semiconductors”, D.M. Toyli, L.C. Bassett, B.B. Buckley, G. Calusine and D.D. Awschalom, MRS Bulletin 38, 139 (2013).
- “Engineering shallow spins in diamond with nitrogen delta-doping”, K. Ohno, F. J. Heremans, L. C. Bassett, B. A. Myers, D. M. Toyli, A. C. Bleszynski-Jayich, C. J. Palmstrøm, and D. D. Awschalom, Appl. Phys. Lett. 101, 082413 (2012).
- “Electrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fields”, L. C. Bassett, F. J. Heremans, C. G. Yale, B. B. Buckley, and D. D. Awschalom, Phys. Rev. Lett. 107, 266403 (2011).
- “Spin-light coherence for single-spin measurement and control in diamond”, B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, Science 330, 1212 (2010).
Related article: “Quantum measurement and control of single spins in diamond”, Science 330, 1188 (2010).