
Jordan Gusdorff
Ph.D. Student, Materials Science & Engineering
Contact
200 S. 33rd St
201 Moore Building
Philadelphia, PA 19104
Email: jag18@seas.upenn.edu
Phone: (215) 898-8312
Fax: (215) 573-2068
200 S. 33rd St
201 Moore Building
Philadelphia, PA 19104
Email: jag18@seas.upenn.edu
Phone: (215) 898-8312
Fax: (215) 573-2068
Jordan received a B.S. in physics from Lafayette College in 2020. Her undergraduate research focused on investigating the optical and electronic properties of thin-film ferroelectric materials. Her current research interests include low-dimensional materials and their applications in optoelectronics and quantum information processing. Jordan was awarded an NSF Graduate Research Fellowship in 2020.
![]() | Patel, Raj N; Fishman, Rebecca E K; Huang, Tzu-Yung; Gusdorff, Jordan A; Fehr, David A; Hopper, David A; Breitweiser, Alex S; Porat, Benjamin; Flatté, Michael E; Bassett, Lee C Dynamical Characterization and Room-Temperature Control of an Optically Addressable Single Spin in Hexagonal Boron Nitride Journal Article Forthcoming Forthcoming. @article{Patel2023, title = {Dynamical Characterization and Room-Temperature Control of an Optically Addressable Single Spin in Hexagonal Boron Nitride}, author = {Raj N. Patel and Rebecca E. K. Fishman and Tzu-Yung Huang and Jordan A. Gusdorff and David A. Fehr and David A. Hopper and S. Alex Breitweiser and Benjamin Porat and Michael E. Flatté and Lee C. Bassett}, url = {https://arxiv.org/abs/2309.05604}, year = {2023}, date = {2023-09-14}, abstract = {Hexagonal boron nitride (h-BN), a wide bandgap, two-dimensional solid-state material, hosts pure single-photon emitters that have shown signatures of optically-addressable electronic spins. Here, we report on a single emitter in h-BN exhibiting optically detected magnetic resonance at room temperature, and we propose a model for its electronic structure and optical dynamics. Using photon emission correlation spectroscopy in conjunction with time-domain optical and microwave experiments, we establish key features of the emitter's electronic structure. Specifically, we propose a model that includes a spinless optical ground and excited state, a metastable spin-1/2 configuration, and an emission modulation mechanism. Using optical and spin dynamics simulations, we constrain and quantify transition rates in the model, and we design protocols that optimize the signal-to-noise ratio for spin readout. This constitutes a necessary step toward quantum control of spin states in h-BN.}, keywords = {}, pubstate = {forthcoming}, tppubtype = {article} } Hexagonal boron nitride (h-BN), a wide bandgap, two-dimensional solid-state material, hosts pure single-photon emitters that have shown signatures of optically-addressable electronic spins. Here, we report on a single emitter in h-BN exhibiting optically detected magnetic resonance at room temperature, and we propose a model for its electronic structure and optical dynamics. Using photon emission correlation spectroscopy in conjunction with time-domain optical and microwave experiments, we establish key features of the emitter's electronic structure. Specifically, we propose a model that includes a spinless optical ground and excited state, a metastable spin-1/2 configuration, and an emission modulation mechanism. Using optical and spin dynamics simulations, we constrain and quantify transition rates in the model, and we design protocols that optimize the signal-to-noise ratio for spin readout. This constitutes a necessary step toward quantum control of spin states in h-BN. |
![]() | Patel, Raj N; Hopper, David A; Gusdorff, Jordan A; Turiansky, Mark E; Huang, Tzu-Yung; Fishman, Rebecca E K; Porat, Benjamin; de Walle, Chris Van G; Bassett, Lee C Probing the Optical Dynamics of Quantum Emitters in Hexagonal Boron Nitride Journal Article PRX Quantum, 3 (3), pp. 030331, 2022. @article{Patel2022, title = {Probing the Optical Dynamics of Quantum Emitters in Hexagonal Boron Nitride}, author = {Raj N. Patel and David A. Hopper and Jordan A. Gusdorff and Mark E. Turiansky and Tzu-Yung Huang and Rebecca E. K. Fishman and Benjamin Porat and Chris G. Van de Walle and Lee C. Bassett}, url = {https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.3.030331}, doi = {10.1103/PRXQuantum.3.030331}, year = {2022}, date = {2022-09-01}, journal = {PRX Quantum}, volume = {3}, number = {3}, pages = {030331}, abstract = {Hexagonal boron nitride is a van der Waals material that hosts visible-wavelength quantum emitters at room temperature. However, experimental identification of the quantum emitters’ electronic structure is lacking, and key details of their charge and spin properties remain unknown. Here, we probe the optical dynamics of quantum emitters in hexagonal boron nitride using photon emission correlation spectroscopy. Several quantum emitters exhibit ideal single-photon emission with noise-limited photon antibunching, g(2)(0)=0. The photoluminescence emission lineshapes are consistent with individual vibronic transitions. However, polarization-resolved excitation and emission suggests the role of multiple optical transitions, and photon emission correlation spectroscopy reveals complicated optical dynamics associated with excitation and relaxation through multiple electronic excited states. We compare the experimental results to quantitative optical dynamics simulations, develop electronic structure models that are consistent with the observations, and discuss the results in the context of ab initio theoretical calculations.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Hexagonal boron nitride is a van der Waals material that hosts visible-wavelength quantum emitters at room temperature. However, experimental identification of the quantum emitters’ electronic structure is lacking, and key details of their charge and spin properties remain unknown. Here, we probe the optical dynamics of quantum emitters in hexagonal boron nitride using photon emission correlation spectroscopy. Several quantum emitters exhibit ideal single-photon emission with noise-limited photon antibunching, g(2)(0)=0. The photoluminescence emission lineshapes are consistent with individual vibronic transitions. However, polarization-resolved excitation and emission suggests the role of multiple optical transitions, and photon emission correlation spectroscopy reveals complicated optical dynamics associated with excitation and relaxation through multiple electronic excited states. We compare the experimental results to quantitative optical dynamics simulations, develop electronic structure models that are consistent with the observations, and discuss the results in the context of ab initio theoretical calculations. |