Quantum Engineering Laboratory
Our group studies quantum dynamics in nanoscale materials and devices using optics and electronics. We seek to better understand complex quantum-mechanical systems, with a goal of developing new technologies for communication, computation, and sensing based on quantum physics.










News
- Congratulations, Alex!
Congratulations to Alex on defending his PhD thesis!
- Congratulations, Raj!
Congratulations to Raj on defending his PhD thesis!
- Congratulations, Yung!
Congratulations to Yung on defending their PhD thesis!
- Congratulations, Alex!
Alex Breitweiser is awarded an IBM PhD Fellowship.
- Congratulations, Jordan!
Incoming PhD student Jordan Gusdorff is awarded an NSF Graduate Research Fellowship.
Recent Publications
![]() | Omirzakhov, Kaisarbek; Idjadi, Mohamad Hossein; Huang, Tzu-Yung; Breitweiser, Alex S; Hopper, David A; Bassett, Lee C; Aflatouni, Firooz An Integrated Reconfigurable Spin Control System on 180 nm CMOS for Diamond NV Centers Journal Article IEEE Transactions on Microwave Theory and Techniques, pp. 1-12, 2023. @article{Omirzakhov2023, title = {An Integrated Reconfigurable Spin Control System on 180 nm CMOS for Diamond NV Centers}, author = {Kaisarbek Omirzakhov and Mohamad Hossein Idjadi and Tzu-Yung Huang and S. Alex Breitweiser and David A. Hopper and Lee C. Bassett and Firooz Aflatouni}, url = {https://ieeexplore.ieee.org/document/10079193/keywords#keywords}, doi = {10.1109/TMTT.2023.3254600}, year = {2023}, date = {2023-03-23}, journal = {IEEE Transactions on Microwave Theory and Techniques}, pages = {1-12}, abstract = {Solid-state electron spins are key building blocks for emerging applications in quantum information science, including quantum computers, quantum communication links, and quantum sensors. These solid-state spins are mainly controlled using complex microwave pulse sequences, which are typically generated using benchtop electrical instruments. Integration of the required electronics will enable realization of a scalable low-power and compact optically addressable quantum system. Here, we report an integrated reconfigurable quantum control system, which is used to find electron-spin resonance (ESR) frequency and perform Rabi, Ramsey, and Hahn-echo measurements for a nitrogen-vacancy (NV) center spin qubit in diamond. The chip can be programmed to synthesize an RF signal tunable from 1.6 to 2.6 GHz, which is modulated with a sequence of up to 4098 reconfigurable pulses with a pulse width and pulse-to-pulse delay adjustable from 10 ns to 42 ms and 18 ns to 42 ms, respectively, at a resolution of 2.5 ns. The 180-nm CMOS chip is fabricated within a footprint of 3.02 mm 2 and has a power consumption of 80 mW.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Solid-state electron spins are key building blocks for emerging applications in quantum information science, including quantum computers, quantum communication links, and quantum sensors. These solid-state spins are mainly controlled using complex microwave pulse sequences, which are typically generated using benchtop electrical instruments. Integration of the required electronics will enable realization of a scalable low-power and compact optically addressable quantum system. Here, we report an integrated reconfigurable quantum control system, which is used to find electron-spin resonance (ESR) frequency and perform Rabi, Ramsey, and Hahn-echo measurements for a nitrogen-vacancy (NV) center spin qubit in diamond. The chip can be programmed to synthesize an RF signal tunable from 1.6 to 2.6 GHz, which is modulated with a sequence of up to 4098 reconfigurable pulses with a pulse width and pulse-to-pulse delay adjustable from 10 ns to 42 ms and 18 ns to 42 ms, respectively, at a resolution of 2.5 ns. The 180-nm CMOS chip is fabricated within a footprint of 3.02 mm 2 and has a power consumption of 80 mW. |
![]() | Thompson, Sarah M; Şahin, Cüneyt; Yang, Shengsong; Flatté, Michael E; Murray, Christopher B; Bassett, Lee C; Kagan, Cherie R Red Emission from Copper-Vacancy Color Centers in Zinc Sulfide Colloidal Nanocrystals Journal Article ACS Nano, 2023. @article{Thompson2023, title = {Red Emission from Copper-Vacancy Color Centers in Zinc Sulfide Colloidal Nanocrystals}, author = {Sarah M. Thompson and Cüneyt Şahin and Shengsong Yang and Michael E. Flatté and Christopher B. Murray and Lee C. Bassett and Cherie R. Kagan}, url = {https://pubs.acs.org/doi/full/10.1021/acsnano.3c00191 https://arxiv.org/abs/2301.04223}, doi = {10.1021/acsnano.3c00191}, year = {2023}, date = {2023-03-09}, journal = {ACS Nano}, abstract = {Copper-doped zinc sulfide (ZnS:Cu) exhibits down-conversion luminescence in the UV, visible, and IR regions of the electromagnetic spectrum; the visible red, green, and blue emission is referred to as R-Cu, G-Cu, and B-Cu, respectively. The sub-bandgap emission arises from optical transitions between localized electronic states created by point defects, making ZnS:Cu a prolific phosphor material and an intriguing candidate material for quantum information science, where point defects excel as single-photon sources and spin qubits. Colloidal nanocrystals (NCs) of ZnS:Cu are particularly interesting as hosts for the creation, isolation, and measurement of quantum defects, since their size, composition, and surface chemistry can be precisely tailored for bio-sensing and opto-electronic applications. Here, we present a method for synthesizing colloidal ZnS:Cu NCs that emit primarily R-Cu, which has been proposed to arise from the CuZn-VS complex, an impurity-vacancy point defect structure analogous to well-known quantum defects in other materials that produce favorable optical and spin dynamics. First principles calculations confirm the thermodynamic stability and electronic structure of CuZn-VS. Temperature- and time-dependent optical properties of ZnS:Cu NCs show blueshifting luminescence and an anomalous plateau in the intensity dependence as temperature is increased from 19 K to 290 K, for which we propose an empirical dynamical model based on thermally-activated coupling between two manifolds of states inside the ZnS bandgap. Understanding of R-Cu emission dynamics, combined with a controlled synthesis method for obtaining R-Cu centers in colloidal NC hosts, will greatly facilitate the development of CuZn-VS and related complexes as quantum point defects in ZnS.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Copper-doped zinc sulfide (ZnS:Cu) exhibits down-conversion luminescence in the UV, visible, and IR regions of the electromagnetic spectrum; the visible red, green, and blue emission is referred to as R-Cu, G-Cu, and B-Cu, respectively. The sub-bandgap emission arises from optical transitions between localized electronic states created by point defects, making ZnS:Cu a prolific phosphor material and an intriguing candidate material for quantum information science, where point defects excel as single-photon sources and spin qubits. Colloidal nanocrystals (NCs) of ZnS:Cu are particularly interesting as hosts for the creation, isolation, and measurement of quantum defects, since their size, composition, and surface chemistry can be precisely tailored for bio-sensing and opto-electronic applications. Here, we present a method for synthesizing colloidal ZnS:Cu NCs that emit primarily R-Cu, which has been proposed to arise from the CuZn-VS complex, an impurity-vacancy point defect structure analogous to well-known quantum defects in other materials that produce favorable optical and spin dynamics. First principles calculations confirm the thermodynamic stability and electronic structure of CuZn-VS. Temperature- and time-dependent optical properties of ZnS:Cu NCs show blueshifting luminescence and an anomalous plateau in the intensity dependence as temperature is increased from 19 K to 290 K, for which we propose an empirical dynamical model based on thermally-activated coupling between two manifolds of states inside the ZnS bandgap. Understanding of R-Cu emission dynamics, combined with a controlled synthesis method for obtaining R-Cu centers in colloidal NC hosts, will greatly facilitate the development of CuZn-VS and related complexes as quantum point defects in ZnS. |
![]() | Fishman, Rebecca E K; Patel, Raj N; Hopper, David A; Huang, Tzu-Yung; Bassett, Lee C Photon emission correlation spectroscopy as an analytical tool for quantum defects Journal Article PRX Quantum, 4 , pp. 010202, 2023. @article{Fishman2021, title = {Photon emission correlation spectroscopy as an analytical tool for quantum defects}, author = {Rebecca E. K. Fishman and Raj N. Patel and David A. Hopper and Tzu-Yung Huang and Lee C. Bassett}, url = {https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.4.010202 https://arxiv.org/abs/2111.01252}, doi = {10.1103/PRXQuantum.4.010202}, year = {2023}, date = {2023-03-06}, journal = {PRX Quantum}, volume = {4}, pages = {010202}, abstract = {Photon emission correlation spectroscopy has a long history in the study of atoms, molecules, and, more recently, solid-state quantum defects. In solid-state systems, its most common use is as an indicator of single-photon emission, a key property for quantum technology. However, photon correlation data can provide a wealth of information about quantum emitters beyond their single-photon purity−information that can reveal details about an emitter's electronic structure and optical dynamics that are hidden by other spectroscopy techniques. We present a standardized framework for using photon emission correlation spectroscopy to study quantum emitters, including discussion of theory, data acquisition, analysis, and interpretation. We highlight nuances and best practices regarding the commonly used g(2)(τ=0)<0.5 test for single-photon emission. Finally, we illustrate how this experimental technique can be paired with optical dynamics simulations to formulate an electronic model for unknown quantum emitters, enabling the design of quantum control protocols and assessment of their suitability for quantum information science applications.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Photon emission correlation spectroscopy has a long history in the study of atoms, molecules, and, more recently, solid-state quantum defects. In solid-state systems, its most common use is as an indicator of single-photon emission, a key property for quantum technology. However, photon correlation data can provide a wealth of information about quantum emitters beyond their single-photon purity−information that can reveal details about an emitter's electronic structure and optical dynamics that are hidden by other spectroscopy techniques. We present a standardized framework for using photon emission correlation spectroscopy to study quantum emitters, including discussion of theory, data acquisition, analysis, and interpretation. We highlight nuances and best practices regarding the commonly used g(2)(τ=0)<0.5 test for single-photon emission. Finally, we illustrate how this experimental technique can be paired with optical dynamics simulations to formulate an electronic model for unknown quantum emitters, enabling the design of quantum control protocols and assessment of their suitability for quantum information science applications. |
![]() | Narun, Leah R; Fishman, Rebecca E K; Shulevitz, Henry J; Patel, Raj N; Bassett, Lee C Efficient Analysis of Photoluminescence Images for the Classification of Single-Photon Emitters Journal Article ACS Photonics, 9 (11), pp. 3540–3549, 2022. @article{Narun2021, title = {Efficient Analysis of Photoluminescence Images for the Classification of Single-Photon Emitters}, author = {Leah R. Narun and Rebecca E. K. Fishman and Henry J. Shulevitz and Raj N. Patel and Lee C. Bassett}, url = {https://pubs.acs.org/doi/10.1021/acsphotonics.2c00795 https://arxiv.org/abs/2112.05654}, doi = {10.1021/acsphotonics.2c00795}, year = {2022}, date = {2022-10-31}, journal = {ACS Photonics}, volume = {9}, number = {11}, pages = {3540–3549}, abstract = {Solid-state single-photon emitters (SPE) are a basis for emerging technologies such as quantum communication and quantum sensing. SPE based on fluorescent point defects are ubiquitous in semiconductors and insulators, and new systems with desirable properties for quantum information science may exist amongst the vast number of unexplored defects. However, the characterization of new SPE typically relies on time-consuming techniques for identifying point source emitters by eye in photoluminescence (PL) images. This manual strategy is a bottleneck for discovering new SPE, motivating a more efficient method for characterizing emitters in PL images. Here we present a quantitative method using image analysis and regression fitting to automatically identify Gaussian emitters in PL images and classify them according to their stability, shape, and intensity relative to the background. We demonstrate efficient emitter classification for SPEs in nanodiamond arrays and hexagonal boron nitride flakes. Adaptive criteria detect SPE in both samples despite variation in emitter intensity, stability, and background features. The detection criteria can be tuned for specific material systems and experimental setups to accommodate the diverse properties of SPE.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Solid-state single-photon emitters (SPE) are a basis for emerging technologies such as quantum communication and quantum sensing. SPE based on fluorescent point defects are ubiquitous in semiconductors and insulators, and new systems with desirable properties for quantum information science may exist amongst the vast number of unexplored defects. However, the characterization of new SPE typically relies on time-consuming techniques for identifying point source emitters by eye in photoluminescence (PL) images. This manual strategy is a bottleneck for discovering new SPE, motivating a more efficient method for characterizing emitters in PL images. Here we present a quantitative method using image analysis and regression fitting to automatically identify Gaussian emitters in PL images and classify them according to their stability, shape, and intensity relative to the background. We demonstrate efficient emitter classification for SPEs in nanodiamond arrays and hexagonal boron nitride flakes. Adaptive criteria detect SPE in both samples despite variation in emitter intensity, stability, and background features. The detection criteria can be tuned for specific material systems and experimental setups to accommodate the diverse properties of SPE. |
![]() | Patel, Raj N; Hopper, David A; Gusdorff, Jordan A; Turiansky, Mark E; Huang, Tzu-Yung; Fishman, Rebecca E K; Porat, Benjamin; de Walle, Chris Van G; Bassett, Lee C Probing the Optical Dynamics of Quantum Emitters in Hexagonal Boron Nitride Journal Article PRX Quantum, 3 (3), pp. 030331, 2022. @article{Patel2022, title = {Probing the Optical Dynamics of Quantum Emitters in Hexagonal Boron Nitride}, author = {Raj N. Patel and David A. Hopper and Jordan A. Gusdorff and Mark E. Turiansky and Tzu-Yung Huang and Rebecca E. K. Fishman and Benjamin Porat and Chris G. Van de Walle and Lee C. Bassett}, url = {https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.3.030331}, doi = {10.1103/PRXQuantum.3.030331}, year = {2022}, date = {2022-09-01}, journal = {PRX Quantum}, volume = {3}, number = {3}, pages = {030331}, abstract = {Hexagonal boron nitride is a van der Waals material that hosts visible-wavelength quantum emitters at room temperature. However, experimental identification of the quantum emitters’ electronic structure is lacking, and key details of their charge and spin properties remain unknown. Here, we probe the optical dynamics of quantum emitters in hexagonal boron nitride using photon emission correlation spectroscopy. Several quantum emitters exhibit ideal single-photon emission with noise-limited photon antibunching, g(2)(0)=0. The photoluminescence emission lineshapes are consistent with individual vibronic transitions. However, polarization-resolved excitation and emission suggests the role of multiple optical transitions, and photon emission correlation spectroscopy reveals complicated optical dynamics associated with excitation and relaxation through multiple electronic excited states. We compare the experimental results to quantitative optical dynamics simulations, develop electronic structure models that are consistent with the observations, and discuss the results in the context of ab initio theoretical calculations.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Hexagonal boron nitride is a van der Waals material that hosts visible-wavelength quantum emitters at room temperature. However, experimental identification of the quantum emitters’ electronic structure is lacking, and key details of their charge and spin properties remain unknown. Here, we probe the optical dynamics of quantum emitters in hexagonal boron nitride using photon emission correlation spectroscopy. Several quantum emitters exhibit ideal single-photon emission with noise-limited photon antibunching, g(2)(0)=0. The photoluminescence emission lineshapes are consistent with individual vibronic transitions. However, polarization-resolved excitation and emission suggests the role of multiple optical transitions, and photon emission correlation spectroscopy reveals complicated optical dynamics associated with excitation and relaxation through multiple electronic excited states. We compare the experimental results to quantitative optical dynamics simulations, develop electronic structure models that are consistent with the observations, and discuss the results in the context of ab initio theoretical calculations. |