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ABSTRACT

DESIGN AND CONTROL OF DYNAMICAL SYSTEMS:

A CLASSICAL TO QUANTUM PERSPECTIVE

Mathieu Ouellet

Lee C. Bassett

The design and control of dynamical systems have long been core objectives of engineering. In

this thesis, we tackle the complexities of design and control across paradigms ranging from Boolean

models of genetic networks, to thermally driven stochastic systems, to quantum-mechanical systems.

These disparate domains share common challenges, including the large dimensionality of the design

space and the computational intractability of objective functions. For classical systems, we draw

inspiration from optimization heuristics and genetic programming, leveraging the inherent symme-

tries within these problems. This approach led to the discovery of a novel symmetry in biological

systems, which we term dynamical mirror symmetry, and the subsequent design of artificial me-

chanical structures that emulate the behavior of biological prions. Quantum systems introduce an

additional layer of complexity: the exponential growth in the dimensionality of the Hilbert space,

which makes classical simulations impractical. As a test platform, we develop control sequences

tailored for nitrogen vacancy centers to achieve precise control. Our approach begins with the use

of standardized quantum control sequences, demonstrating their capability to infer the parameters

of a quantum Hamiltonian. We then develop a more general method inspired by diagrammatic path

integrals, which enables full differentiability and supports perturbative expansions for optimization

and control.
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CHAPTER 1

INTRODUCTION

1.1. Dynamical systems

Time keeps moving forward, bringing change everywhere. Planets orbit, weather changes, molecules

bounce around, and complex chemical reactions break bonds. On the quantum level, electrons,

quarks, and gluons do their thing. Statistical mechanics tells us this forward march—known as the

’arrow of time’—is one-way only. So, everything ages and evolves along the way.

It is, therefore, unsurprising that science has tried to explain the diverse temporal behaviors observed

in nature. This led to the creation of a broad field known as dynamical systems that focuses on the

temporal evolution of systems. Examples of such systems range from simple projectiles traveling

through a vacuum to populations of rabbits and foxes on a secluded, thriving island. They also

include complex social dynamics like those of the stock market.

Historically, the field of dynamical systems theory began with the early work of ancient astronomers

like Hipparchus and Claudius Ptolemy and was later advanced by Johannes Kepler and Isaac New-

ton, all of whom sought to predict the positions of planets and stars. Inspired by the study of

celestial bodies, Poincaré laid the foundational principles of dynamical systems theory, seeking to

answer key questions about the behavior of complex systems. He introduced the study of qualita-

tive properties of differential equations, bifurcation theory, and probabilistic concepts like ergodicity.

Poincaré also pioneered phase space analysis and the study of limit cycles. Following Poincaré’s

foundational work, the field of dynamical systems evolved as non-linearly as the systems it studies

through the early 20th century. The focus remained on understanding predictable, stable behaviors

and refining mathematical tools, bringing ideas from topology, geometry, and differential equations.

Researchers began to uncover systems that defied these traditional expectations, displaying irregu-

lar and unpredictable behaviors. This led to the emergence of chaos theory in the 1960s, marked
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by the recognition that deterministic systems could exhibit extreme sensitivity to initial conditions,

unpredictability, and complex dynamics that traditional methods struggled to describe. These in-

sights challenged existing paradigms, revealing that even simple systems could evolve in ways that

were inherently difficult to predict.

The field continues to evolve today, driven by advances in computational, data-driven, and machine-

learning approaches aimed at modeling complex and large-scale dynamical systems. The diversity

of systems—from biological networks and climate models to economic systems and engineered pro-

cesses—each with its unique characteristics and complexities, underscores the field’s vast potential

and ongoing challenges. This thesis will focus on a wide range of dynamic systems and goals. We will

start by studying gene regulatory networks using discrete models, which capture the on-off states

of genes and their interactions, providing insights into the underlying dynamics and patterns of

gene expression. We will then study simple molecular structures in a thermal bath that mimics the

behavior of biological prions, exploring how these structures undergo conformational changes and

propagate misfolding through stochastic interactions. Finally, we will study quantum systems, with

a particular focus on nitrogen-vacancy (NV) centers coupled to a 13C spin bath, examining their

dynamics, coherence properties, and potential applications in quantum sensing and information

processing.

To study a given system S, we define a state x(t) that evolves in function of time. The state

contains all the information necessary to define the evolution of the systems. The state x would

contain the positions and velocities in the projectile example. In the case of population dynamics,

such as that of rabbits and foxes, the state could be sufficiently described by recording the numbers

of each species for a given year and the preceding year. A potentially acceptable state for the stock

market would be the order book for each stock, which shows how many stocks are sold at a given

price and bought at a given price.

Mathematically, this leads to a state space X where x ∈ X includes every possible system configu-
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ration it can attain or be started with. The dimension of the state space X is determined by the

number of variables required to describe the system’s state. For instance, the projectile needs 12

real variables to describe its position and orientation with their velocities, making its state space

twelve-dimensional X ⊂ R12. The state space often has a natural topology, typically assumed to be

a smooth manifold when dealing with continuous dynamical systems. This thesis addresses various

state spaces, most of which are smooth manifolds. An exception is found in Chapter 2, which

examines a system on a discrete space.

In state space, a system’s state is a point, and its whole trajectory can be visualized as a curve

that describes how the state changes over time. This evolution is given by the transition map

ϕ(t1, t0) : X → X which take the state at time t0 and evolve it to t1 where t1 > t0 such that

x(t1) = ϕ(t1, t0, x0). This map should be well-defined in a subset of the state space X. An

important property of the transition map is the semi-group property that says that for t2 ≥ t1 ≥ t0,

we have

ϕ(t0, t0, x0) = x0 (1.1)

ϕ(t2, t0, x0) = ϕ(t2, t1, ϕ(t1, t0, x0)) (1.2)

This property implies that the system’s evolution over the interval from t0 to t2 can be broken down

into an evolution from time t0 to t1, followed by the evolution from t1 to t2. Generally, this is the

only condition required for a transition map to be valid.

For each system, the map follows some dynamical equation; in the case of the projectile, this

is Newtonian mechanics (we assume the projectile is way slower than light). The rabbits and

foxes example follow the Lotka-Volterra equations, which model population dynamics. Those two

systems are modeled as deterministic, meaning that two copies of those systems starting at the same

position will follow the same trajectory. In this thesis, Chapter 2 will use deterministic evolution for
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biological systems. Chapter 4 and 5 also use a deterministic state evolution of quantum mechanical

time evolution, which leads to random projective measurement. While this is believable for the

projectile and perhaps a good first approximation for the island system, this is not true for the

stock market. Although models are available, the system’s evolution remains highly random and

can only be partially captured by approaches that account for this inherent randomness. In our

case, Chapter 3 will use such a model to consider the coupling of a deterministic system with a

random energy source.

In all our modeling attempts, we will be faced with a multitude of problems. One is internal

structural inaccuracies, where the model does not consider all the complexity of the real system.

For example, asymmetry in the projectile shape leads to neglecting oscillating behaviors and, more

importantly, air drag. In our case, we will always be forced to make strong assumptions and

simplify our model. We will, for example, consider that gene networks can be modeled through

discrete evolution under simple dynamics. While those assumptions will often limit the precision

of our model’s predictions, they simplify the study and allow us to focus on essential aspects.

Another source is measurement noise and parameter uncertainty, where a parameter’s exact value

is unknown. Parameters, such as the average rate at which foxes catch rabbits, need to be estimated

in any modeling endeavor. More often than not, those parameters are learned or fitted on measured

data using the model properties. In Chapter 4 and 5, we will present different methodologies for

the learning of quantum systems.

Finally, external structural inaccuracies also play an important role. Each model does not perfectly

take into account all the dependencies outside it. In the dynamics of a predator-prey system, such

as rabbits and foxes, external factors like the availability of vegetation significantly impact rabbit

populations, which in turn affects the fox population. Similarly, for a projectile not in a vacuum, the

surrounding air significantly influences its trajectory through variations in density and wind speed.

For the stock market, the perfect model would take into account every agent in the system, their
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sentiment on the market, the state of the economic system they operate in, every other financial

instrument, and every external factor, such as geopolitical events or the news. This is, of course, an

impossible-to-build model. To tackle this problem, the map ϕ can be taken as probabilistic, where

a probability density is given for each reachable state in X. Or the system can be isolated, and the

external influences can be accounted for with enough precision. This issue will be a primary focus

of Chapter 3, where our systems are immersed in an unknown, fluctuating environment that cannot

be directly monitored. Consequently, we will represent this environment as a source of random

fluctuations.

1.2. Design versus Control

In the initial phase of this study, we focus on defining the necessary state variables and identifying the

evolution map ϕ(t1, t0). This thesis will explore a variety of systems, each characterized by distinct

maps and state spaces (see Figure 1.1). In Chapter 2, we study Boolean networks, which represent

well-isolated systems for which the states are binary vectors, and the map ϕ is a discontinuous map

in time that follows boolean logic rules. Chapter 3 studies mechanical systems in a thermal bath

interacting with their environment in a random manner and a continuous time evolution. In this

case, the state is simply positions and velocities, and the map ϕ is given by Langevin equations,

which we will study. Finally, Chapter 4 and 5 study the quantum spin degree of freedom in not-so-

well-isolated interacting systems. As we will discuss in section 1.3, their state is given by the tensor

product of each sub-system state, and the Schrodinger equation gives their evolution.

Once the dynamical system is established, we examine its behavior. Dynamical systems are rich in

terms of behaviors. This analysis typically includes assessing how small perturbations or alterations

in initial conditions affect the system, a process known as stability analysis [3]. Other exciting

behaviors consist of attractors or sets of states toward which the system tends to evolve, regardless

of the starting conditions [4]. Those states can be simple points where the system goes and stays

fixed, called fixed points, or a limit cycle that the system reaches and then cyclically visits.
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Figure 1.1: Projects overview All projects can be thought of along two axes: one axis spans from

the design of systems to the control of existing systems, while the other ranges from studying the

systems’ intrinsic properties to exploiting these properties for practical use. Following a standard

quadrant ordering, we have studied quantum dynamics to gain access to optimizers for control,

controlled a quantum system to function as a sensor, designed mechanical systems that exploit

prionic dynamical properties, and designed biological gene networks with specific properties to

better understand their origins in nature.
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Both Chapter 2 and 3 will be interested in such behaviors where the goal is to reach a stable point.

We do so by designing the system to reach a specific goal. In the case of the Boolean networks of

Chapter 2, the goal is to understand where the long limit cycle appears. To answer that, we study

how different system elements interact with each other and relate them to the properties of the

map ϕ. In the case of mechanical systems, our goal is to create mechanical systems with two fixed

points such that under random interaction, they both stay in those states. However, we require

that when those two types of fixed points collide, they both collapse to the same fixed point. This

type of dynamic is akin to Prions, a protein that has two stable foldings and can propagate one of

its foldings to neighboring proteins of the same kind.

While understanding what causes a system’s specific dynamic to appear is of general interest, we

often care about how we can influence a system to do what we want. In this case, energy is pumped

or taken from the system in specific ways to change its behavior. This energy manipulation aims to

maintain the system within desired parameters or to shift it to a more favorable state. Designing

systems entails setting up initial conditions and configurations that inherently possess the desired

dynamics. Conversely, controlling systems involves actively intervening in ongoing processes to steer

the system towards specific outcomes, often in real-time.

For instance, in designing the Boolean networks mentioned earlier, the focus is on structuring the

network so that it naturally exhibits long limit cycles without the need for external interference.

On the other hand, controlling such a system would look quite different. It would involve adjusting

the state of specific nodes, applying external constraints, or changing the rules based on observed

behavior to induce or sustain a desired state. This dynamic and responsive approach to influencing

the system underscores the primary distinction between design and control: one is about creation

with foresight, and the other is about guidance through interaction.

To go back to our simple examples, a control system for the projectile could be some flaps that can

be controlled to change the trajectory. On the other hand, designing the projectile’s launcher to
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make it rotate is a design-based approach, where the gyroscopic effect is used to keep the projectile

straight. In the case of population dynamics, we could hunt off one or both populations, decreasing

their numbers, while a design strategy could be to make a part of the island inhospitable for the

foxes. Generally, design involves shaping the systems to naturally lead to the desired effect, while

control requires some sort of energy expenditure.

Control means adding an input u(t) to the system’s evolution [5, 6]. This control input can be

obtained in different ways. In feed-forward or open-loop control, u(t) is predetermined based on a

model of the system, aiming to achieve the desired outcome by anticipating the system’s response.

In feedback or closed-loop control, u(t) is calculated in real time based on the difference between

the desired and current states, continuously adjusting to minimize this error. Different approaches

relax the rigidity of the control framework, like adaptive control, which modifies u(t) by adjusting

the control parameters to handle uncertainties and changing conditions in the systems [7].

Under control, the transition map becomes x(t1) = ϕ(t1, t0, x0, u(·)) which now depends on the

time-varying vector u(·). This introduces new conditions for the transition map. Notably, only the

input applied before the observed time affects the system. For two input signals u1(·) and u2(·)

such that u1(t) = u2(t)∀t ≤ t1 we have that ϕ(t1, t0, x0, u1(·)) = ϕ(t1, t0, x0, u2(·)). This means

the system is causal, relying solely on previous states and control actions before the observed time

point. In other words, tomorrow’s actions do not influence the system’s state from yesterday.

Both Chapter 4 and 5 inscribe themselves in this control framework as seen in Figure 1.1. In the

first case, we control the electronic spin of an NV center so that it acquires information about its

surroundings. Then, its state can be read, which gives us information about its surroundings. To

do so, we adapt a well-known control framework called dynamic decoupling sequences for sensing

tasks. In Chapter 5, we break from this limiting framework and build a new framework that allows

us to learn similar control sequences.
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This framework is inspired by graph-theoretic ideas, which can represent various systems and their

evolution, including the evolution of quantum systems [8], brain networks [9, 10, 11], protein inter-

actions [12, 13], biological [14, 15] and social networks [16, 17, 18]. Here, we apply these concepts

to quantum systems, demonstrating their potential to reveal insights into complex dynamics and

control within this domain.

1.3. Classical versus Quantum

This thesis examines two main categories of systems: classical systems in the first two chapters and

Quantum systems in the following two. This section explores the differences between those two types

of systems. We compare the Lagrangian and Hamiltonian frameworks of classical mechanics with

quantum mechanics, highlighting the distinctions. This chapter aims to provide a brief introduction.

1.3.1. Boolean dynamic

In the first chapter, we will treat the most straightforward dynamical system to understand but not

necessarily the easiest to work with Boolean networks [19, 20]. For boolean networks, the states x

comprise n Boolean variables (x ∈ Zn) that can be either 1 (on) or 0 off). The system updates at a

discrete time when each node uses its Boolean function (which can be the same for all nodes) and

updates its state. This update can be done synchronously, where all the node states are updated

simultaneously, or asynchronously, where a subset, potentially chosen randomly, is updated each

time [21, 22].

Boolean networks are frequently used to model biological systems [23, 24, 25]. They provide a

simple yet powerful framework to model the complex interaction between components like proteins

and genes [26]. Detailed quantitative information about those components is hard to get in those

systems. The binary approach allows us to capture the essential dynamic without having to fully

study their exact quantitative influence on each other.

Each node Boolean function only uses a subset of the other nodes as input. For example, in a system
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of 4 nodes, the synchronous update function of node 3 (ϕ3) could take the form. ϕ3(t+1, t, x1, x3) =

x1 ∨ x2, meaning that the next state takes the value x1 or x2, 1 if any of them is 1 or 0 otherwise.

In this system case, ϕ is independent of the value of t since the system evolution is independent of

time.

From ϕ3, we see that the update function only needs the values of two nodes to function, node 1

and itself. This allows us to represent an abstraction of the system as a directed graph that shows

how the information propagates. In this simple case, node 1 would have an outgoing arrow pointing

to node 3, and node 3 would have an ongoing arrow pointing to itself.

The state space of such networks is all the unique combination of on/off states for each of the n

nodes denoted Zn. Contrary to our previous examples, this space is discrete and contains 2n possible

states arranged in n dimensions. This space can be visualized as a directed graph (because of its

discreetness), where each arrow represents the transition according to the network’s logical rules.

Because of the finite nature of space, any state evolves into an attractor. They can be described by

their length, meaning the number of transitions before the state cycles back to its initial state in

the attractor. Attractors of length one are fixed points where the system remains in a single state

indefinitely. Attractors are of interest in biological systems because they represent stable cell states

(for fixed points) or cyclic behaviors (lengths greater than 1).

Previous studies have studied the mean length of an attractor in random networks at the critical

limit [27, 28, 29]. Those networks are made by selecting K nodes as input nodes for each node and

randomizing a Boolean update function that uses those K nodes as input. This is done on all the

n nodes of the network. At the critical limit, Boolean networks feature properties at the boundary

of the frozen space where small perturbations at one node barely propagate and the chaotic phase

where the same perturbations lead to exponential propagation [30]. Criticality is determined by K

and the Boolean functions used.
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This approach has shed light on the scaling behaviors of the attractor length when n tends to

infinity [27, 28, 29, 31, 30]. In Chapter 2, we investigate a similar problem, but we will deal with

the finite case with no fixed connection pattern (K is variable). This leads to the problem that the

standard tool, namely mean field theory, cannot be used. Therefore, to study what leads to long

cycling behaviors, we will turn toward designing networks with such long cycles and study their

shared property. This will allow us to conclude the conditions needed in the interaction network’s

topology to generate long cycles.

1.3.2. From Newton to Langevin

For a classical system, one can use Newtonian formalism to study the evolution of a simple system.

This applies to point-like particle systems with constant mass where the forces and accelerations

are in a non-relativistic, inertial reference frame. In this case, the state x of the system is given by

two vectors, the position q ∈ Rn and the velocities q̇ ∈ Rn. In this framework, knowing q̇(t) from

t ∈ [t0, t1] and the initial positions q(t0) we have that q(t1) =
∫ t1
t0
q̇(τ)dτ + q0(t0). Then we only

need to find the evolution of q̇(t), which is given simply by the second law of motion F = mq̈(t).

The rotation degrees of freedom can be taken into account in a similar manner by equating the

torque τ to the derivative of the angular momentum L such that τ = dL
dt .

Newton’s equations are deterministic; they do not capture the reality of microscopy systems. When

noise and environmental interactions become significant while staying mostly random, as in molec-

ular dynamics, a better framework, the Langevin framework, is needed. The Langevin framework

introduces random forces to represent thermal fluctuations, giving a more accurate picture. Ad-

ditionally, it includes dissipative forces, like friction, which Newton’s framework misses, as it does

not represent the exchange with the environment. We will give here a small introduction to this

framework and then use it in Chapter 3 to create a mechanical structure analogous to biological

prions.

A large particle, which we will call the Brownian particle, is immersed in a bath of much smaller
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particles. For example, consider a small dust particle, approximately 200 µm in size, suspended in

a steady body of air composed primarily of dinitrogen molecules. This represents a size difference

of about six orders of magnitude. In this example, the Brownian particle is small enough to stay

airborne and moves randomly due to collisions with much faster gas molecules.

The Brownian particle is still governed by mdq
dt = F (t) where F here includes interaction with

the small particle bath. If the dynamic of all those particles was simulated and their positions

and velocities were known, this force would not be random. This is, however, quite unpractical,

and an approximate form for F would be desirable. Considering only the effect of the bath, F

can be approximated by two components. First, a friction force (−γq̇) prevents the particle from

infinitely gaining energy from the surrounding medium. Secondly, a random force (ξ(t)) represents

the random collision with the small particles of the bath. This led to the Langevin equations of

motion for a Brownian particle:
dp

dt
= Fdet(t)− γq̇ + ξ(t), (1.3)

where Fdet(t) represents the deterministic forces not due to the bath (gravity, for example).

The random forces ξ(t) is a stochastic variable that needs a little bit of care in defining. For a

massive particle at equilibrium, we expect from the equipartition of energy that

⟨q2(t)⟩ = kbT

m
, (1.4)

where kb is the Boltzmann constant and T the temperature and ⟨. . .⟩ denote the average over the

equilibrium distribution. On average, the force ξ(t) should not break the symmetry of the system

such that the average over the distribution of ξ is zero ( ⟨ξ(t)⟩ = 0). Furthermore, the impacts

should be instantaneous and not correlated with each other, which can be enforced by specifying

the second moment ⟨ξ(t1)ξ(t2)⟩ = gδ(t1 − t2). This absence of correlation is explained by the

difference in timescales between the bath’s motion and the Brownian particle.
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In chapter 3, we design small mechanical systems composed of springs, masses, and magnets. While

the description here captures the essence of a rigorous approach, a detailed analysis is provided in

chapter 3. These systems must be stable in two distinct conformations, represented by the states

x1 and x2. Stability, in this context, means that for a specific range of temperatures, the evolution

of both states, ϕ(t1, t0, x1 = H) and ϕ(t1, t0, x2 = P ), remain close to their initial states. The two

states are denoted as the healthy state, H, and the prionic state, P . Their names are derived from

the specific dynamics that will be defined and enforced in the following paragraph. We express this

stability condition as

d(ϕ(t1, t0, x0), x0) < ϵ ∀t1 ≥ t0, (1.5)

where d denotes a distance metric defined on the state space, and ϵ specifies the permissible defor-

mation threshold that ensures the state remains recognizable. For example, in the case of a protein,

this condition implies that despite the natural fluctuations within a thermal bath, the protein’s

structure remains within a range that allows it to perform its function.

Furthermore, when considering the combined system (x1, x2), it must exhibit the following proper-

ties:

d(ϕ(t1, t0, (H,H)), (H,H)) < ϵ ∀t1 ≥ t0, (1.6)

d(ϕ(t1, t0, (P, P )), (P, P )) < ϵ ∀t1 ≥ t0, (1.7)

lim
t1→∞

ϕ(t1, t0, (H,P )) → (P, P ) (1.8)

These conditions enforce the prionic nature of the dynamics, where pairs of healthy states (H,H)

and pairs of prionic states (P, P ) remain stable. However, mixed pairs (H,P ) inevitably collapse

into prionic pairs (P, P ). This mechanism ensures the propagation of the diseased, or P , states.
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1.3.3. Toward Quantum Mechanics

These two design projects for classical systems provide an excellent testbed for exploring systems

characterized by discrete, nonlinear dynamics and Newtonian mechanics under thermal motion, both

of which aim to generate complex and interesting behaviors. Having established these foundational

principles, we next extend our approach to quantum systems, where the challenges and opportunities

of quantum dynamics come into play. To bridge this gap, we first review the classical formalisms

that naturally lead into quantum mechanics, highlighting the connections and divergences essential

for our exploration.

In classical mechanics, we often prefer to work in a formalism that allows for more general coor-

dination to tackle complex systems and constraints. This approach is captured by the Lagrangian

framework, offering a versatile tool for handling varying coordinates and constraints in complex

dynamics. The Lagrangian formalism uses the potential and kinetic energy to write the equation

of motion directly. This will also allow us to work directly on a scalar quantity, the system’s en-

ergy, without dealing with the forces, a vector quantity. In this framework, the state x = (q, q̇)

comprises generalized positions q and their derivatives, where these positions need not represent

particle positions exclusively. For instance, in a two-particle system along a line,q1 could denote the

center of mass position, while q2 could represent the particle separation. Alternatively, in a more

unconventional scenario, q1 could represent the angle subtended by two points with respect to a

third non-collinear point. using those generalized coordinates, the kinetic energy T (q, q̇) and the

potential energy V (q) the Lagrangian can be defined as

L(q, q̇) = T (q, q̇)− V (q). (1.9)

In the case where no external or non-conservative input is added to the system, the dynamic of the

14



system can be written as a system of 2n equations where n is the dimension of q such that

d

dt

∂

∂q̇i
L(q, q̇) = ∂

∂qi
L(q, q̇) (1.10)

d

dt
qi = q̇i (1.11)

The Lagrangian formulation facilitates the effective handling of constraints. Although this frame-

work is suitable for most classical mechanics problems, quantum mechanics originates from a differ-

ent framework, namely Hamiltonian mechanics. Hamiltonian mechanics allows for a simpler study

of symmetries and energy conservation. As observed in Equation 1.9, the Lagrangian resembles

the system’s energy but with an opposite sign. Hamiltonian mechanics builds on this insight by

reformulating the total energy of the system E = T + V in a useful way. The energy of the system,

under some condition on the generalized coordinate that can be found in [32] can be written as

E(q, q̇) =
∂L
∂q̇
q̇ − L(q, q̇) (1.12)

This allows us to define the generalized momentum p = ∂
∂q̇ . We would like to rewrite the energy

in terms of this new variable p and q. This is motivated by the fact that those two are the new

independent variables of the energy, the same way q and q̇ were independent in the Lagrangian

formalism. For clarity, we will write q̇ as a function of q and p, which allows us to write the energy

(That we will now write as H and not E) as

H(q, p) = pq̇(q, p)− L(q, q̇(q, p)). (1.13)

This formulation allows us to write Hamilton’s equations that can be solved to get the dynamic of
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the system

q̇ =
∂H(q, p)

∂p
, (1.14)

ṗ = −∂H(q, p)

∂q
(1.15)

This formalism can be greatly simplified using Poisson’s brackets, which also have the advantage

of leading to the quantization of quantum mechanics. Poisson’s brackets are defined between two

functions u(q, p) and v(q, p) by

{u, v}q,p =
∑
i

∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi
(1.16)

The indices on the Poisson bracket can be omitted since they are invariant under the canonical

transformation of q and p. We will therefore simply write {u, v} for {u, v}q,p. Any quantity of

interest in our classical system can be expressed as a function of the state and the time f(q, p, t).

The evolution of this quantity is dictated by the evolution of the system’s state, which follows the

Hamiltonian formalism. The evolution of f(q, p, t) is then given by

df

dt
=
∂f

∂t
+ {f,H} . (1.17)

This is also trivially true for the canonical variable since they are also functions of the state. They

can be written as

q̇i = {pi, H} , (1.18)

ṗi = {pi, H} . (1.19)

While the added complexity of this chapter may seem unnecessary at the moment, it will serve two

purposes. First, quantum dynamics naturally emerges within a Hamiltonian framework and follows
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many of the same equations. Secondly, the reader should now understand that the same dynamical

equations can be represented in various ways, each leading to different methods for computing the

system’s evolution. We will build on this idea to introduce yet another formalism specifically for

representing quantum mechanical evolution, though it can still be applied to classical systems.

1.3.4. Quantum mechanics

In the previous section, we began with Newtonian mechanics and generalized the coordinates to

develop Lagrangian mechanics. We then extended this approach further by generalizing the mo-

mentum, which gives us the Hamiltonian. In all of that framework, the system studied is classical,

as is the case for Chapter 2 and 3. In this section, we introduce the systems and framework for

the second half of this thesis, which focuses on quantum mechanics. This overview is a basic intro-

duction for readers less familiar with the subject. Readers seeking a comprehensive introduction to

quantum mechanics are encouraged to consult the following resources [33, 34, 35, 36].

There are multiple important distinctions between classical and quantum dynamics. In classical

physics, as we saw previously, systems have definite states at any given time. Quantum dynamics

allows for more complex states where the system can be in a superposition of multiple states before

measurement. This allows for highly nontrivial consequences on the evolution of the systems, as is

exemplified in the celebrated double slit experiment [37]. In this experiment, an individual particle

passing through two slits simultaneously creates an interference pattern typically associated with

waves, demonstrating the principle of superposition and challenging classical intuitions [38].

Another important difference is the impact of measurement and the concept of uncertainty. Classical

measurements do not fundamentally alter the state of the system; for example, measuring the speed

of a projectile can be done without changing its course. In quantum mechanics, measurement affects

the system and typically transforms it from a superposition state to a single state. This process is

probabilistic and is governed by the uncertainty principle, which prevents us from simultaneously

accessing non-commuting variables, such as position and momentum, with perfect precision.
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In quantum mechanics, we will go one step forward in generalizing momentum and the position

coordinates. In this framework, they are replaced by operators; for example, the one-dimensional

position over an axis x will become x̂. While a state in Hamiltonian mechanics was given by (q, p)

here, it is now represented by a vector in a Hilbert space |ψ⟩. The operator acts as a measurement

on the state |ψ⟩ such that if |ψ⟩ represent a particle at position x then the operator x̂ acts like

x̂ |ψ⟩ The system’s state can be finite, as in a system of N spins, or infinite, like that of an electron

trapped in a potential well.

This process, called canonical quantization, aims to preserve the structure and symmetries of a

classical Hamiltonian while enforcing the commutation relations of quantum mechanics, which we

will explain shortly. But first, let’s start with a small example of first canonical quantization in the

case of a harmonic oscillator. The classical Hamiltonian is given by

H(q, p) = E(q, p) =
p2

2m
+

1

2
mω2x2 (1.20)

and the state of the system can be represented as a 2-dimensional vector (q, p). Under the first

canonical quantization p is replaced with the operator p̂ = −iℏ ∂
∂q and the position q is replaced

by the operator q̂ that acts as a multiplication operator by q such that for a function f(q) we get

q̂f(q) = qf(q). The Hamiltonian, therefore, becomes

Ĥ = − ℏ2

2m

∂2

∂q2
+

1

2
mω2q̂2. (1.21)

The classical Hamiltonian was a function of (q, p), and now we have an operator that needs to

operate on the system’s state. The state space of the quantum harmonic oscillator is the one-

dimensional Hilbert space of square-integrable functions, which is the space of complex function in
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one variable such that

∫ ∞

−∞
|ψ(x)|2dx <∞ (1.22)

The time evolution of a quantum state |ψ(t)⟩ is given by the Schrodinger equation

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ(t) |ψ(t)⟩ . (1.23)

In time-independent problems where the state is stationary, the equation becomes

Ĥ |ψ⟩ = E |ψ⟩ , (1.24)

which shows once again the relationship between the Hamiltonian and the energy of the system E.

It is useful to investigate how the Poisson bracket transforms in quantum mechanics. This investi-

gation helps to better understand the link between the classical Hamiltonian formalism, presented

in the previous section, and quantum mechanics. Additionally, it reflects the fact that, in quantum

mechanics, our variables no longer commute. As mentioned earlier, position and momentum cannot

be measured simultaneously with arbitrary precision. They obey the uncertainty principle, which

states that

√
⟨q̂2⟩ − ⟨q̂⟩2

√
⟨p̂2⟩ − ⟨p̂⟩2 ≥ ℏ/2 (1.25)

where ℏ (Planck’s constant) represents the smallest unit of action and
√
⟨Â2⟩ − ⟨Â⟩2 is the standard

deviation of the operator A. This can be done by changing the Poisson Bracket into a commutator

such that

{u, v} → 1

iℏ
[û, v̂] (1.26)
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where [û, v̂] = ûv̂ − v̂û. Note that we exchanged the functions u, v for operators û, v̂.

These changes gave rise to the Heisenberg picture in quantum mechanics, an alternative framework

to the Schrödinger picture that offers valuable analogies with classical Hamiltonian mechanics. In

classical mechanics, the evolution of a state function f is given by df
dt = ∂f

∂t +
{
f, Ĥ

}
. In the

Heisenberg picture, the evolution of an operator A is given by

dA

dt
= − i

ℏ

[
A, Ĥ

]
+
∂A

∂t
(1.27)

where each operator, including Ĥ, is expressed in the Heisenberg picture, causing them to differ

slightly from those in the Schrödinger picture. We will not delve into the differences between the

Schrödinger and Heisenberg pictures here, as we will return to the Schrödinger picture for the

remainder of the chapter. This brief discussion serves to highlight the parallels between classical

and quantum mechanics.

Chapter 4 will explore quantum sensing, focusing on determining the magnitude of the term α

in a Nucleus Hamiltonian of the form ĤN = ĤN0 + αĤN1. We will achieve this using a small

electronic quantum system E described by the Hamiltonian ĤE(t), which we can both control

and measure accurately. The two systems are coupled via a small interaction described by ĤNE ,

enabling information about the parameter α to transfer to the electron system E that we control.

By adjusting the control part of the Hamiltonian, Ĥcontrol(t), we can create a resonance whose exact

position depends on the value of α, allowing us to measure it accurately. Surprisingly, we will find

that the current theory fails to explain the observed resonance, indicating that the Hamiltonian

ĤN is incomplete. This discrepancy will be resolved by introducing a new term that accounts for

symmetry breaking due to distortions in the system’s crystal lattice.

The final chapter, Chapter 5, presents an implementation of a new representation of the quantum

evolution operator. In quantum mechanics, the transition map ϕ(t1, t0, |ψ⟩) that evolves the state
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|ψ⟩ from time t0 to t1 is a linear operator that is normally denoted |ψ(t1)⟩ = Û(t1, t0) |ψ(t0)⟩. In

the case of a time-independent Hamiltonian, this map can be computed easily by the exponential

operator such that Û(t1, t0) = exp
{

i(t1−t0)
ℏ Ĥ

}
. In the time-dependent case is given by :

U(t, t0) = T
{
exp

(
− i

ℏ

∫ t

t0

H(t′)dt′
)}

, (1.28)

where T denotes the time-ordering operator. While this expression may appear straightforward,

it conceals significant complexity beneath the syntactic convenience of the time-ordering operator.

The time-dependent evolution operator can be expanded in a series using the Dyson series as

U(t, t0) =

∞∑
n=0

(
−i
ℏ

)n ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

H(t1)H(t2) · · ·H(tn). (1.29)

A significant part of quantum computing involves calculating the unitary operator U and adjusting

the Hamiltonian H(t) so that U performs a desired task. There are many ways to compute this U ,

and they can be thought of as analogous to the different representations we previously discussed for

classical mechanics. While all methods yield the same results, some offer more advantageous prop-

erties. Certain approaches allow for easier approximations in specific systems or handle dissipative

effects more effectively.

In the time-independent case, this reduces the computing of the exponential of a matrix, which can

be accomplished through various methods. This can be achieved using the Taylor series expansion,

eigenvalue decomposition, or the Padé approximation technique, to cite only a few. The Taylor

series expansion is particularly interesting because it is equivalent to expressing the evolution as a

sum over paths on the graph generated by the Hamiltonian. These walks can be sampled as an

approximate method, prioritizing the most significant ones. However, it is challenging to enumerate

all the paths and sum their infinite number without performing an infinite number of operations.

This makes the approach impractical for control, and the simplicity of computing the exponential
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becomes ineffective. The situation is even worse in the time-dependent case due to the time-

ordering operator combined with integrals, which prevents this type of expansion. Despite these

challenges, solutions can still be found by making the matrix product continuous and employing

Green’s functions. In Chapter 5, we will demonstrate that this expression can still be interpreted as

a sum over paths on a graph, and we will present an implementation using modern machine learning

frameworks.
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CHAPTER 2

BREAKING REFLECTION SYMMETRY: EVOLVING LONG DYNAMICAL CYCLES

IN BOOLEAN SYSTEMS

This chapter was previously published as Ouellet, Mathieu, Jason Z. Kim, Harmange Guillaume,

Sydney M. Shaffer, Lee C. Bassett, and Dani S. Bassett. "Breaking reflection symmetry: evolving

long dynamical cycles in Boolean systems." New Journal of Physics 26, no. 2 (2024): 023006. I was

responsible for conceptualizing the research questions, designing and conducting the experiments,

analyzing the data, and drafting the manuscript.

2.1. Introduction

One of the most intriguing characteristics of complex systems is that they evince emergent global

functions from local interactions. Gene regulatory networks are a quintessential example, describing

the complex network of short time-scale interactions between molecules to produce the long time-

scale cycles of reactions that sustain life [39, 40, 41, 42]. Such cyclic behaviors play a fundamental

role in many processes, including cell cycles [43], biological clocks [44], cell fate [45], cancer regulation

and DNA damage [46], and signaling [47]. It is known that cyclic behavior in random Boolean

models arises more often than fixed points and that such behavior is favored by evolution [48].

Despite their significance and prevalence, long cyclic reactions remain far from understood, in part

because the process of determining their underlying mechanisms is made difficult by the nonlinear

and heterogeneous distribution of interactions. Can we distill simple principles for how specific

patterns of local interactions determine long and complex cycles of reactions?

Biological systems have been fruitfully modeled as Boolean networks to shed light on this ques-

tion. In these models, the state of each component—a gene, protein, or RNA—is described by a

binary value, and the interactions between components—binding, chemical reaction, and so on—

are described by Boolean functions. Prior work has extensively studied the interaction functions
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[49, 50, 51] to model probabilistic [52] and multi-level [53] interactions or to stabilize existing se-

quences of reactions [54]. Other work has focused on the intensive study of specific network topolo-

gies [40, 41, 55, 56, 57, 58] and local structures that are typically referred to as motifs [59]. However,

we still lack a general understanding of how the local interaction topology determines long sequences

of cycles, thereby limiting our ability to make principled predictions across different networks about

the global effects of local structures.

Here, we provide such an understanding through the analytical and numerical study of Boolean

network topology. First, we use an evolutionary algorithm to optimize for network motifs with long

cycle lengths and discover the existence of suppressed motifs that are almost entirely absent in the

evolved networks. Next, we discover that many such evolved networks display a dynamical reflection

symmetry, such that if the network at state x⃗(t) transitions to state y⃗ = x⃗(t + 1), then that same

network at state 1⃗ − x⃗(t) transitions to state 1⃗ − y⃗. Moreover, we find that the suppressed motifs

systematically break this symmetry.

To demonstrate the practical utility of our finding, we apply it to real biological systems and

find that reflection symmetry appears naturally in networks that have evolved to support long

dynamical cycles, whereas suppressed motifs decrement the length of dynamical cycles. Our findings

demonstrate how dynamical symmetries play a crucial role in the observed complexity of biological

systems.

2.2. Boolean Network Model

Our Boolean network model follows a typical construction [53] motivated by biologically meaningful

functions [20], the notion of threshold logic [60], and multiple models of Boolean networks [61, 62, 48]

that have been used successfully in biology. The system state x⃗(t) is represented by an n-dimensional

Boolean vector in Bn = {True,False}n, a finite space of dimension 2n that we refer as the state

space. For simplicity, we will often use an integer representation of True as 1 and False as 0. We

consider networks where interactions between the nodes are either null, inhibitory, or excitatory.
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Figure 2.1: Boolean network model. (A)(left) Example of an interaction network. Red indicates

an inhibitory connection; black indicates an excitatory connection. Curved arrows indicate self-

loops. (A)(bottom, right) Two consecutive temporal states of the network on the left. Connections

not in use are shown in grey. The state of each node is shown as a ‘0’ or ‘1’ inside the relevant

circle. (A)(top, right) The full state space of the network is shown on the left. Arrows indicate the

temporal progression from state to state. Each state is encoded as the activity of the three nodes

(e.g., ‘(0,1,1)’ listed clockwise starting from the top one). (B) A larger interaction network of 6

nodes. The state space of this network will depend upon whether the orange edge is excitatory or

inhibitory. In the former case, the state space is as shown in the top beige circle; in the latter case,

the state space is as shown in the bottom beige circle. (C) Distribution of maximum cycle length

for uniformly sampled networks of 5, 6, 7, and 8. (D) Expected decrement in cycle length (x-axis)

when a single edge is randomly altered (y-axis). (E) Optimized networks for cycle length obtained

by random sampling (blue) and by a Pareto evolutionary algorithm (orange).
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We represent those interactions by a weighted adjacency matrix, A where Aij is 1 for an excitatory

edge from node i to node j, −1 for an inhibitory one, or 0 if there is no interaction (see Figure 2.1.

B).

The states of all nodes are updated in discrete time steps; all states are updated at once. At every

time step, each node sums the excitatory and inhibitory inputs, and if that sum is greater than

0, then the node becomes active (1); otherwise, it becomes inactive (0). The update rule can be

formally specified as follows:

xi(t+ 1) =


1, if

∑
j Ajixj(t) > 0

0, if
∑

j Ajixj(t) ≤ 0

(2.1)

and we will write τ(x⃗(t)) = x⃗(t+ 1).

2.3. Numerical Results

2.3.1. Sampling networks

To relate cycling dynamics to the topology of the interaction network, we began by considering

random networks. We discovered that most random networks have a short cycle length (Figure

2.1.C), which is reflected in the exponential tail of the cycle-length distribution. The identification

of cycles is an NP-hard problem [63]. Hence we limit our study of cycle lengths to networks

containing eight or fewer nodes. Long cycles are also extremely rare. For instance, a random

network of seven nodes has a cycle of length 19 with an approximate probability of one in a million

(see Figure 2.1.C). We have also found that edge density is a determining factor in maximal cycle

length, as denser networks are more likely to exhibit long cycles. Furthermore, altering the nature

of a single edge (e.g., from excitatory to inhibitory) has a strong destructive effect on the maximal

cycle length (see Figure 2.1). We did not observe a correlation between the degree of asymmetry

in the connection matrix and the length of cycles; in fact, we found that both the best and worst
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cycles often exhibit high degrees of symmetry, suggesting that the specific nature of the asymmetry

is crucial in determining cycle length.

The apparent simplicity of this Boolean model belies surprising complexity. Unlike Hopfield net-

works, the lack of symmetry in the interaction matrix (aij ̸= aji) of Boolean networks implies the

non-existence of a Lyapunov function, making them difficult to study analytically [64, 65]. Further,

the inclusion of self-loops has been shown to increase the number and robustness of attractor states,

thereby increasing the complexity of our model’s dynamics [66]. For these reasons, such models are

remarkably expressive and useful in explaining real biological observations such as cell differentiation

[67].

We investigated the association between a network’s maximum cycle length and its edge density

to identify factors influencing cycle length. Our findings indicate that higher edge density leads

to an increase in both average and maximum cycle lengths (see Figure 2.2A). We observe that in

random networks, a combination of inhibitory and excitatory edges results in longer cycles (see

Figure 2.2B). Furthermore, we found that the average maximum cycle length increases with the

presence of excitatory or inhibitory circuits in the interaction network (see Figure 2.2.C). We also

found that the specific distribution of excitatory and inhibitory connections, particularly in self-

connections, differentially affected cycle length. Self-inhibition, which we defined as an inhibition

circuit of length 1, was positively correlated with a high maximum cycle length. By contrast, self-

excitation, which we defined as an excitatory circuit of length 1, was negatively correlated with a

high maximum cycle length (see Figure 2.2.D).

To identify and study highly cyclic networks, we utilized an objective function that balances the

maximization of cycle length and the minimization of network density. This trade-off is of signif-

icance in various domains. Biological systems often face energetic constraints on interactions or

the physical pathways on which they rely [68, 69], while the boundaries of their design limit engi-

neered systems. The goal of minimizing interactions is countered by the goal of facilitating a diverse
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Figure 2.2: Topological properties of random networks. (A) The average and largest maximal

cycle length as a function of density for an eight-node network. (B) The average maximal cycle

length as a function of the number of edges of each type: excitatory and inhibitory. (C) The average

maximal cycle length as a function of the average size of physical cycles within the interaction

network. Note that the former is a dynamical property and the latter is an interaction property.

(D) The average maximal cycle length as a function of the number of self-loops, as given by the

diagonal entries in the adjacency matrix. All plots use a sample of 400,000 random networks.
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Figure 2.3: The role of suppressed motifs in cycle dynamics. (A) Example of suppressed

motifs. For the full list, see Appendix 2.7.1. (B) Average cycle length in randomly sampled networks

for n = 7 from a uniform distribution over the space of all interaction network topologies (blue) and

from a random sample over networks created by gluing suppressed motifs together (see Appendix

2.7.1). (C) Proportion of network with a given cycle length for random sample over networks

created by gluing together a randomly selected subset of all motifs (red) and for a random subset

of motifs. Here we see that the decrease in cycle length is not caused by the gluing process but by

the motifs themselves.

dynamical repertoire [70, 71, 72, 73].

We used a genetic Pareto algorithm [74] that encodes each network’s genetic representation as a

string of n2 characters in the set −1, 0, 1 (see also Supp. Figure 2.9. A-B-C ). This algorithm

finds Pareto efficient solutions without the need to define one objective function encapsulating the

two objectives, allowing us to analyze the entire landscape of optimal solutions. Using this genetic

algorithm, we evolved random networks along the Pareto front and confirmed that we produced

networks with larger maximum cycle lengths than equi-dense random networks (Figure 2.1. E; for

further information regarding the structure of Pareto networks, see Supp. Figure 2.9. D-E).
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2.3.2. Suppressed motifs

We then investigated the factors contributing to the variation in the set of Pareto optimal networks

compared to the general population of networks. We found significant differences in the networks’

local topology, which differs markedly between evolved and random networks. We observed that

the Pareto front networks’ global properties—specifically, their density and average degree—were

similar to those of random networks. Yet, their local topology was dramatically different. When

considering 3-motifs, i.e., subsets of three nodes in the graph with their connections, we discovered

a subgroup of around thirty (out of a possible 3284) 3-motifs that were almost completely absent in

the evolved networks (see Figure 2.3.A and Supp. Figure 2.8.A). The existence of these suppressed

motifs suggests a condition on the network’s local connectivity that affects its evolved functionality.

To evaluate the impact of suppressed motifs on cycle length, we artificially created networks con-

taining a high density of suppressed motifs (see the ). We found that the average cycle length was

significantly lower than expected in random networks for all network densities (p < 0.0001) (Figure

2.3.B). We also found that the density of networks with a given maximum cycle length was lower

than expected in random networks (Figure 2.3. C). To determine the specificity of the observed

behavior, we next constructed networks containing a high density of randomly selected 3-node mo-

tifs. In this new population, we observed only a 20 % decrease in the density of networks with a

long cycle length; this is in comparison to a more than 95% decrease for suppressed motifs networks

(Figure 2.3. C; see Supp. Figure 2.11 for p-values and confidence intervals). These findings suggest

that a decremented cycle length is specific to suppressed motifs and is not purely an artifact of

sampling over a limited number of motifs.

2.3.3. Dynamical reflection symmetry drives long cycles

To better understand what drives the existence of suppressed motifs, we exhaustively enumerated

all networks for n < 5 (Figure 2.4. A). This becomes rapidly pointless for larger n since the number

of networks is approximately given by 3n
2

n! . For each n < 5, we identified the networks with the
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Figure 2.4: The role of symmetries in cycle dynamics. (A) Example networks of up to 4

nodes, with the highest cycle length possible in that network size. (B) The state space of the

n = 4 network shown in panel (A). The lines without arrowheads represent the states linked under

the reflection symmetry (e.g., ‘(0,0,0,1)’ is linked to ‘(1,1,1,0)’). The top right schematic shows

conceptually how the reflection symmetry affects the system’s dynamics where a state x is mapped

under time evolution to the state y. (C) Average number of fully symmetric transitions. (D) We

sample the average partial symmetry ratio, the fraction of bits that transition symmetrically, for

random networks (blue), evolved networks (orange), and suppressed motif networks (red).
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maximal cycle length (see Appendix 2.7.1). What do all of these networks have in common? We

might naively posit that symmetry in the structure of the interaction is important, and indeed the

optimized networks with 1 < n < 4 exhibit structural symmetry. However, we observed that the

4-node networks with the maximum cycle length were not structurally symmetric, motivating the

need for a different explanation.

As an alternative, we considered a dynamical reflection symmetry that manifests in the network’s

state-space representation. Such a reflection symmetry permits the inverse of a sequence of states

as another sequence. The inverse state is given by the ¬ operator or the standard NOT gate. Under

this operator, the state of four Boolean nodes x⃗ = (0110) becomes the state ¬x⃗ = 1⃗− x⃗ = (1001).

Then, when we say dynamical reflection symmetry, we mean that if the system’s dynamics evolve to

map x(t) to x(t+ 1), then the system’s dynamics also evolve to map ¬x(t) to ¬x(t+ 1) as follows:

τ(x) = y ⇐⇒ τ(¬x) = ¬y. (2.2)

We observed dynamical reflection symmetry in the network’s state transition diagram in all of the

1 < n < 5 networks found to have maximal cycle lengths (Figure 2.4.A-B).

This observation motivates the question: Might reflection symmetry relate to suppressed motifs,

and if so how? We found that the maximum cycle length was significantly lower (Figure 2.4. C) in

the suppressed motif networks than in the random networks (pairwise two-sided z-test, p < 0.0001).

In contrast, our evolved networks—built to optimize the maximum cycle length—displayed a 3- to

7-fold increase in reflection symmetric transitions compared to random networks. These findings

link reflection symmetry with the presence of suppressed motifs and a network’s ability to display

cyclic behaviors.

To better understand how reflection symmetry might relate to suppressed motifs, we returned to

our artificially constructed networks containing a high density of suppressed motifs and measured
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Figure 2.5: Reflection symmetry in gene regulation networks. (A) Comparison between

the average symmetry ratio for Boolean network models of biological systems and their random

counterparts built to maintain the joint distribution of node number and nodes’ in-degree. (B)

Comparison between the average symmetry ratio of Boolean network models of biological systems

separated into categories according to tags in the GINim repository.

the number of reflection-symmetric transitions. The number of perfectly symmetric transitions is

small; hence, it is of value to also estimate partial symmetries. Specifically, we estimate the fraction

of bits that respects symmetry. Specifically, given a Boolean network of size n, the partial symmetry

ratio psr for this network is given by:

psr =
1

2n · n
∑
x

∑
i

θ(|f(x)i − f(¬x)i|), (2.3)

where θ(x) takes the value 1 if x > 0 and is zero elsewhere. With this broader definition of

partial symmetry, we observed a similar trend in which evolved networks showed an increase in

the partial symmetry ratio, whereas suppressed motif networks showed a decrease (Figure 2.4.D).

These findings motivate further investigations into the causes that might drive correlations between

dynamical reflection symmetry, suppressed motifs, and long cycles.
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2.3.4. Real boolean biological networks support reflection symmetries

Evolved networks that displayed a long maximum cycle length tended to express reflection-symmetric

transitions more frequently than random networks. Interestingly, those transitions were not exclu-

sively present inside the cycles but were also found in the non-cyclic part of the state space. This

observation suggests that dynamical symmetries may play an even more profound role in evolved

networks, and motivates investigation of their presence in broader categories of dynamical networks,

both synthetic and natural. We turned to gene regulatory networks to test our hypothesis regarding

the presence of reflection symmetries in biology. We used two repositories: the GINsim software

[75] and the PyBoolNet python package [76].

The set of Boolean biological networks used contains 70 networks. Networks containing non-binary

states were transformed to a binary representation using GINSIM. They have between 3 and 218

nodes, with an average of 33.7 nodes. The average connectivity is in the range of [1.18, 4.82] with an

average of 2.55 connections. The 129 random Boolean networks were generated using the BoolNet

package with uniform function generation, and uniform linkage based on Kauffman’s method [77].

The number of genes was selected to reproduce the distribution found in the real network, and

the function generation was done randomly using the homogeneous policy. The average number

of inputs was selected to reproduce the average number found in the real networks with the given

number of nodes.

Using these data, we observed that Boolean models of biological systems showed markedly more

symmetries than random networks (Figure 2.5. A). Specifically, the average number of symmetric

transitions in the biological model networks was 64.4%, whereas the average number in random

networks was 53.6%. The slight deviation from 50% is due to the finite size of the analyzed networks.

Further, the reflection symmetry ratio was significantly greater in the biological networks than in

the random networks (two-sided t-test, t = 7.068, p = 4.6 × 10−10). In addition to this overall

effect, we noted a marked variation across the different models: for 10 of the biological networks,
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less than 50% of transitions were symmetric; for 29 of them, more than 70% were symmetric; and

for 12 of them, more than 80% were symmetric. To better understand this variability, we divided

the models into biologically relevant categories using the tags provided in the GINsim repository.

The seven most populated categories were retained for analysis (Figure 2.5. B). We observed that

the most symmetrical categories were cell signaling, cell fate, cell activation, and cancer, with only

a few networks lying under the 50% line.

By considering symmetries in Boolean networks, we illustrate a simple method to determine re-

flection symmetry and examine the overall development of the system. Notably, this concept of

reflection symmetry can also be applied to non-binary state systems and even to systems where

only part of the system’s evolution is known. As an example, we have included a basic case study

using continuously valued scRNA-seq data of cancer cells, demonstrating how these symmetries can

be utilized to classify cells that respond to drugs versus those that are drug resistant (see Appendix

2.4).

2.4. Deriving reflection symmetry directly from data

Boolean networks permit a simple, general definition of dynamical symmetry. However, Boolean

models are not available for many natural dynamical systems, and creating them requires extensive

work. Hence, here we analyze symmetry directly from data, circumventing the challenges of Boolean

model construction.

We considered the problem of drug resistance in melanoma at the single-cell level. The state of

gene expression can predict which cells will resist therapy and which ones will be sensitive and

responsive to therapy. Notably, this prediction is possible before treating the cells with any drug.

Thus, we define the state of a cell as a “primed” resistant state if that cell would be resistant upon

the application of a drug [78]. For this experiment, we profiled the gene expression of these cells

using scRNA-seq. We then divided the cells into two categories: the drug-sensitive cells and the

cells primed for drug resistance [78].
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Figure 2.6: Reflection symmetry in cancerous cells. (A) An illustrative example of the

reflection symmetry ratio for four cells that express two genes. (Left) The normalized level of

expression for all four cells and both genes. (Right) A symmetric matrix showing the computed

reflection symmetry ratio between every pair of cells. In this example, cells 1 and 3 are highly

reflection-symmetric, whereas cells 2 and 4 are not reflection-symmetric (asymmetric). (B) The

distribution of the reflection symmetry ratio (s̄) for all pair of cells. The red line indicates the

expectation for uncorrelated, normally distributed genes. (C) The probability for a randomly

selected pair of cells to have different states (drug-sensitive state/drug-resistant state) as a function

of the reflection symmetry ratio s̄. The orange curve shows that the probability for pair of cells with

a reflection symmetry ratio s̄ less than x as shown in Inset 1. The blue curve shows the probability

for pair of cells with a reflection symmetry ratio s̄ higher than x as shown in Inset 2. The red curve

shows the probability obtained by random permutations of the labels for both cases. The green line

shows the average reflection symmetry ratio over all the pairs of cells.
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To apply the idea of symmetry to these data, we normalized the expression of each gene. Specifically,

negative (positive) normalized quantities represented a lower (higher) expression level than the

average expression found for a given gene in all the cells tested. Genes that are highly expressed in

more than 70% of the cell are removed as these are typically housekeeping genes unrelated to the

process of interest. We also remove genes that are not expressed in at least 25% of the cells since it

becomes too hard to find two cells having the same gene expressed. Genes with zero expression are

changed to NaN. Finally, genes with a decreasing expression distribution, i.e. where most expression

values are close to 0, are removed because of their lack of suitability for defining a symmetry axis.

We then defined a parity metric to determine whether two cells had a symmetric expression at the

gene level. This metric quantifies how opposite the same gene expressions are for two different cells.

For each gene, the maximum of the distribution of each gene’s expression over all cells is defined as

the zero expression level. Redefining the zero expression allows us to think of the expression of each

gene as being more (positive value) or less (negative value) than the most common quantity found

in the cells. The maximum of the distribution was preferred over the average since the distributions

have highly zero-inflated counts due to the experimental technique used. The expression value for

each gene is then scaled by the standard deviation. Let x be a gene, i, j be a pair of cells, and s(i, j)

be the reflection symmetry ratio. We ask for the function s(i, j) to be 1 for a perfectly symmetric

expression, i.e. xi = −xj . We also desire that the function will output a 0 if |xi| ≈ 0 and |xj | ≈ 0

even if xi = −xj . This condition allows us to avoid attributing some symmetry properties to noise

by requiring a difference of at least 20% of the standard deviation between the two expressions xi

and xj . Finally, we want the function to output a 0 when xi and xj are of the same sign. One

possible function with these properties is given by

s(i, j) = 1−max

{∣∣∣∣ xi + xj
|xi|+ |xj |+ ϵ

∣∣∣∣h1

,
1− tanhh2 (rx,ij − r)

2

}
,

where h1, h2 are parameters that select the smoothness of the transition between the values of 0
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Figure 2.7: Reflection symmetry ratio s(i, j) given two gene expression values: xi and xj . For

symmetric values, the ratio is 1 and collapses rapidly to 0 when the two values have the same sign.

and 1, and rx,ij =
√
x2i + x2j . The parameters used for the indicator are h1 = 1.7, r = 0.1, h2 = 25,

and ϵ = 1× 10−7. Figure 2.7 shows the reflection symmetry ratio for these parameters.

We observed that the distribution of the parity metric spanned from 0 (non-symmetric pairs) to

0.4 (symmetric pairs). The distribution was also bi-modal, suggesting the existence of two pair

types (see Figure 2.6.B). The expectation value of the parity metric for two normally distributed

gene expression measurements is 0.343; by contrast, we find that the observed gene expression

measurements are skewed toward non-symmetry. With these data and metrics in hand, we studied

the symmetrical opposition of the two different states (drug-sensitive or primed). Specifically, we

computed the probability that a pair of cells respecting a given criterion were of different states.

When considering all pairs independently from their reflection symmetry, we observed a probability

of approximately 35% for a pair to have different states. Therefore, we have approximately a one-

in-three chance of picking a drug-sensitive and a primed cell when picking a pair of cells at random

in our data set. We expected pairs with a high (low) reflection symmetry ratio to have a higher

(lower) probability of residing in different paths (drug-sensitive vs. primed). Our expectation was

confirmed: pairs with a low reflection symmetry ratio had a probability of around 25% to be of
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different states versus 80% for the high reflection symmetry ratio pairs (see Figure 2.6.C). Broadly,

these data demonstrate that reflection symmetry correlates with drug resistance in cancer and could

be used to classify a cell as drug-resistant or drug-responsive.

The application of symmetry analysis to gene expression inside melanoma scRNA-seq data is a

simple example of the potential of considering symmetry in biology. However, the drug-sensitive

and drug-resistant paths were not directly observed in the cells where the gene expression was

measured. The labeling was inferred by principal component analysis of the cells’ gene expression,

where the variance was found to be principally located on one axis. This axis was later found to

correlate highly with sensitivity and drug resistance. Additional studies could be conducted on

data sets that are not linearly separable using one axis and on data expressing more than a binary

category.

2.5. Discussion

2.5.1. Functional Role for Reflection Symmetry.

In this study, we uncovered a new link between the expression of specific motifs and the existence

of cycling behavior in Boolean networks. Potential links between these two properties have been

reported previously for some gene regulatory networks [79]. For example, prior studies report a link

between bi-fan motifs and cycling behavior [79] and find that chaotic motifs are linked to cycling

[80]. Building upon these observations, we have shown that abnormally underrepresented motifs

have a specific function as reflection-symmetry breakers. This relationship sheds light on how an

interaction network with these motifs can maintain long cycles.

2.5.2. Diversity of Dynamical Symmetries.

Here we investigated the problem of dynamical symmetries in Boolean networks. Many other types

of symmetries exist. For example, one might seek to understand symmetries in the output function

on each node and consider that the function f1(x⃗) = (x1 or x2) is invariant under permutation

of its argument. In fact, output function symmetries at the node level are a powerful way to
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characterize complex network dynamics [81, 82]. Our work extends these observations by showing

that symmetries at the global level can explain some properties of networks with complex dynamics.

Another common approach is the study of symmetric properties inside the interaction network, such

as fibration symmetry [83, 84]. Our approach differs from these studies in evaluating symmetry in

the state space [85], but nevertheless provides insights regarding a specific property of the interaction

network. This property does not appear as a symmetry in the structure but as a balancing equation

on each node. By taking a different perspective from prior studies, our approach sheds light on new

mechanisms of dynamical symmetries and the function of the systems that support them.

2.5.3. Methodological Considerations.

Several methodological considerations are pertinent to our work. First, there remains a conceptual

and formal distinction between a system and its Boolean network model. Here, we have shown that

biologically inspired Boolean networks display a high level of reflection symmetry and that not all

biological processes have the same amount of symmetry. Yet, it remains unknown whether reflection

symmetry is intrinsic to the system or a result of the map between a set of experiments and its

Boolean network model. Future theoretical work could examine the impact of the mapping process

on our findings. Further experimental work could examine the evolution of a simple biological

system (e.g., yeast) and confirm the existence of reflection-symmetric states.

Boolean models of biological systems can include more general types of interactions and update

rules than the ones we considered. Reflection symmetry can be easily identified in both thresholded

and un-thresholded models. Furthermore, since every Boolean model maps binary states to binary

states, our reflection symmetry definition is broadly applicable and does not depend on the nature

of the updating scheme. The difference in models does affect the ability to analyze motifs since

the model determines the possible types of interactions. Further work should examine this poten-

tial dependence and the broader impact of the updating schemes and the model on the condition

necessary for mirror symmetry. Future work could also seek to generalize and test the theory of dy-

40



namical reflection symmetry for more general Boolean networks and multiple updating schemes and

to random Boolean networks [57, 86]. Finally, various other deterministic network-based systems

exhibit cyclical behavior, and it would be intriguing to investigate whether subclasses of motifs also

exist in systems such as coupled maps on networks [87, 88] or evolutionary games on networks [89].

2.6. Conclusion

In identifying the important role of dynamical symmetry in Boolean networks, this work suggests

strategies that can be used to engineer complex dynamical systems with particular dynamical fea-

tures, or to modify an existing system’s architecture to influence its properties. In particular, we

have shown is is possible to enhance or suppress cycling behaviors by altering only a small subset

of edges in a system’s interaction network topology. As applied to complex biophysical systems in

pharmacology and microbiology, this understanding may aid the design of targeted diagnostics and

therapeutics.

Our findings can also improve Boolean network modeling of real systems. In situations where cycling

behavior is a defining system characteristic, the search for a suitable Boolean network model can be

dramatically simplified by considering the symmetric subspace. This is crucial since it is impractical

to explore the complete state space experimentally, even for small networks. Similarly, reflection-

symmetric counterparts of observed trajectories can be added to training data sets, doubling the

information available to machine learning models at no extra cost, analogously to mirroring images

for neural network training.

In elucidating the formal relationship between reflection symmetry and cyclic behaviors, our work

raises intriguing new questions for the scientific community. For example: What causes and reg-

ulates dynamical symmetries? Why does the degree of dynamical symmetry vary across different

cellular and molecular processes? Which diseases or other perturbations to the system impact this

symmetry? Is symmetry explained by evolution or caused by the physics of the system? Answers

to these questions will profoundly impact our fundamental understanding of natural dynamical
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systems.

2.6.1. Data and code availability

All data and code used in the manuscript are available at https://github.com/ouelletmathieu/BMS.

2.7. Appendix

2.7.1. Sampling

We sample the space of Boolean networks in two steps. First, a density is chosen uniformly at

random from the range 0.2 to 1. Second, we select elements in the matrix and fill those elements

with either a −1 or +1—with equal probability—until we reach the target density. For the biased

case, we again begin by choosing a density randomly from 0.2 to 1. Then, we select valid motifs

randomly from the set of desired motifs and place them randomly in the interaction network. If we

cannot find a position for a given motif, then we discard that motif and randomly draw another

from the same set. Once the desired ratio of motifs is achieved, the network is filled with random

edges to achieve the global density. Edges used for a motif (empty edges included) are protected

and cannot be filled in this part of the process.

2.7.2. Evolved networks

In our evolutionary algorithm, we set the population size to 600 interaction networks with a density

taken from a uniform distribution ranging from 0.2 to 1.0. The selection for mating is handled by

the NSGA2 algorithm [74]. In each step, 400 new offspring are created using two mating operators

(see next section for details). We mutate each edge of the offspring’s interaction networks with a

probability of P = 0.02. When a component is selected for mutation, its value is changed to one of

the two other values in {−1, 0, 1}. The generation process is then repeated until convergence. The

whole process is repeated 30 times.

We use two mating operators that reflect the exploratory and convergent mating strategies, respec-

tively. Both operators are used with equal probability each time we call the mating procedure.
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Figure 2.8: Ruppressed motifs and their impact on the propagation of perturbations.

(A) Set of suppressed motifs. To improve the readability of this visualization, the set of suppressed

motifs was approximately clustered by structural similarity. Each blue circle represents a cluster.

The line between motifs inside a cluster shows how motifs in the cluster are related. The beige

circle represents the global structure of the motifs inside the blue cluster. (B) Small perturbations

propagate more in evolved networks than in random and suppressed motif networks. We sample the

average distance between two states which initially differs only by one component after 3 updates

(triangle) and after 10 updates (square).
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The first mating operator generates two offspring. For each index of the matrix, each offspring gets

assigned either the first or second parent’s component. If the first offspring receives its component

from parent two, then the second offspring receives its component from parent one. Then both

matrices are tested for validity; if one is found to be disconnected when considering the interaction

matrix as an undirected graph, the process is restarted. The second mating operator generates one

offspring at a time. We list the cycle basis of both parents’ interaction networks. Then, random

cycle structures are picked from the cycle basis to build a new interaction network containing a ran-

dom mixture of cycles from both parents. Only cycles that agree for all of their common inhibition

or excitation edges are selected. If two selected cycles cannot be joined because of disagreeing edges,

the process is restarted. We use the first mating operator if the process fails more than 1000 times.

Such failures happen but are rare and represent a negligible percentage of the offspring production.

Interestingly, each node in the evolved networks had approximately 20% more incoming excitatory

edges than inhibitory edges. The evolved networks also exhibited nearly twice as many physical

excitation circuits as the random networks (see Supp. Figure 2.9.D). These features were emergent

properties, as the evolutionary algorithm did not explicitly optimize for them. In addition to

comparing all evolved networks to all random networks, we separately examined the dynamics of

evolved networks that implemented the exploratory versus the convergent mating strategy. We

found that convergent mating consistently produced networks with greater maximum cycle length

than exploratory mating (see Suppl. Figure 2.9.C). In general, the structure of the two parents does

not generate offspring with long cyclic behavior. Even for the convergent mating strategy, most

cycles from both parents do not act cooperatively, generating important attractors leading to fixed

points.

2.7.3. Motif characterization

To calculate the z-value for the number of expected motifs, we used sampled data to obtain each

motif’s average expected number and its expected standard deviation. Since the expected number
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for 3-motifs is always one order of magnitude less than the standard deviation, we consider motifs

with an individual z-score of less than −0.1 to be suppressed. This repression typically corresponds

to the absence of the motif in the graph. We then consider a given motif to be suppressed in the

population if it is tagged as suppressed in at least 50% of the population’s individual graphs.

2.7.4. Reflection symmetry

Since for each n ≤ 4, there was at least one network with the maximal possible cycle length with

this symmetry, it is quite tempting to conjecture that there always exists a maximal network with

this property. This, of course, cannot be confirmed computationally and could only be realistically

verified up to n = 5 without developing a more sophisticated search algorithm.

2.7.5. Robustness

Another frequently cited property of the evolved networks is their robustness to perturbation. We

sought to determine if the evolved networks and the suppressed motif networks had distinct levels

of robustness. The notion of robustness depends upon a notion of response to perturbation. The

distance between the non-perturbed and perturbed states is measured at each time step by the

Hamming distance, which only counts the number of non-matching bits. A robust network is one

where the distance stays constant or decreases over time. We expect evolved networks to show an

increase in robustness, and we expect suppressed motif networks to show a decrease in robustness.

The results are surprising: for a large range of edge densities, perturbations to suppressed motif

networks do not drive a large divergence in state dynamics in comparison to uniform random

networks (Supp. Figure 2.8).

Intuitively, one might imagine that a network’s sensitivity to perturbation could depend upon the

maximum cycle length, such that the longer the maximum cycle, the greater the tendency for

perturbations to drive divergent dynamics. In contrast to this intuition, however, random and

suppressed motif networks have quite different average cycle lengths. The difference could then be

entirely caused by the presence of long cycles in the evolved population in comparison with the
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Figure 2.9: Offspring generation and properties of suppressed motifs. (A) Offspring gen-

eration is based on cycle preservation. (B) Example of the approximated Pareto front where green

points are optimal in the Pareto sense, and where red points are sub-optimal. (C) Evaluation

of the different mating strategies or policies that generate offspring. (D) Ratio of the number of

different physical constituents of the Pareto front networks versus random networks. (E) Ratio of

the number of different physical constituents for the suppressed motif networks versus the random

networks.
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Figure 2.10: Time evolution of perturbations. (A) Average Hamming distance from the 1-

bit perturbed network to the unperturbed network as a function of the time for the Pareto front

networks binned by cycle length. (B) Same as in panel (A) but for a maximal cycle length of 16

and plotted separately for Pareto front networks, random networks, and suppressed motif networks.

two other populations. To test this possibility, we have compared networks from each category

with the same cycle length. For a given maximum cycle length, evolved networks have a slightly

lower distance than the random and the suppressed networks for a given cycle length (see Supp.

Figure 2.10.A). The difference however is quite small and is cyclic with the period equal to the cycle

length, as expected (see Supp. Figure 2.10.B). Therefore, suppressed motifs and the optimization

process have, for a given maximum cycle length, a rather low impact on how the networks handle

perturbations.
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networks shown in Figure 2.3.D. The p-values were capped at 10−6 when their values were smaller

than this number. (B) Proportion difference between the uniformly sampled networks and the

motifs enriched networks with the confidence interval shown as error bars.
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CHAPTER 3

MECHANICAL PRIONS: SELF-ASSEMBLING MICROSTRUCTURES

This chapter is in press as Ouellet, Mathieu, Dani S. Bassett, Lee C. Bassett, Kieran A. Murphy,

and Shubhankar P. Patankar. "Mechanical prions: Self-assembling microstructures." arXiv preprint

arXiv:2402.10939 (2024). I was responsible for conceptualizing the research questions, designing and

conducting the experiments, analyzing the data, and drafting the manuscript.

3.1. Introduction

Prions are shape-shifting proteins notorious for their ability to cause deadly transmissible diseases

[90, 91]. Among others, these include scrapie in sheep and goats, bovine spongiform encephalopathy

in cattle, and Creutzfeld-Jakob disease in humans. Despite such examples of its malignancy, prionic

behavior can also be advantageous in certain contexts. Proteins with prionic appendages facilitate

the formation and maintenance of long-term memories, while fungi such as yeasts rely on prions to

transmit heritable characteristics [92].

The infectious propagation of conformational changes drives prionic behavior [93, 94]. Physical

studies of biological prions have primarily taken a macroscale, statistical view, focusing on chemical

rate modeling [95, 96]. A microscale physical model that reproduces the key elements of prions—

including their ability to exist in distinct conformations, self-assemble into the prion state, and self-

replicate—has yet to be developed and examined. In this work, we address this gap by presenting

a biologically-inspired mechanical model of prions.

Prions—whether biological or synthetic—must possess several key properties. First, the system

must have at least two stable conformations. For consistency with biological prions, we refer to

these conformations as healthy (H) and prionic (P) (Figure 3.1A). Second, the P conformation

must be able to form stable polymers, and P-P dimers should be more stable than H-H dimers
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(Figure 3.1B). Third, the H conformation must be able to interact with the P conformation to form

an unstable H-P dimer. The H-P dimer, in turn, must be able to convert to a P-P dimer through

a reaction that cannot occur solely with monomers; this property is essential to allow a mechanical

prion to transmit its misfolded configuration to nearby structures (Figure 3.1C). If these minimal

conditions are met, we posit that a propagation mechanism similar to that occurring in biological

prions can be replicated in a system of simple mechanical elements that we call mechanical prions

(Figure 3.1D).

3.2. Prions as bar-joint linkages

We employ a bar-joint linkage model [97] within a thermal bath [98], inspired by prior studies on

conformational changes [99, 100, 101]. Each structure comprises N nodes, divided into two groups:

exterior nodes, which enable polymer binding, and interior nodes, for structural stability. Inter-

actions between linked nodes are modeled using a harmonic potential common for coarse-grained

modeling of proteins [102, 99] and a Lennard-Jones (LJ) 12-6 potential to allow for interactions

between nodes across prions [103]. Results are presented in LJ units, where the LJ energy mini-

mum, ε, is set to 0.05Kℓ2, where K is the harmonic spring constant and ℓ is the length of external

bonds. We set the LJ length scale, σ, such that the energy minimum between two nodes occurs at

a separation 0.05ℓ. To incorporate thermal fluctuations, we model the system’s dynamics using the

Langevin formalism in LAMMPS [104].

3.3. Discovering mechanical prions

When searching the space of bar-joint linkages for viable prions, several choices are pertinent: the

exterior shape for stable configurations, defining a (possibly non-convex) polygon; the number and

position of internal nodes; and the number and lengths of the edges connecting the internal and

external nodes.

We constrain our search for mechanical prions to the space of regular pentagons, in this case, a 4-

torus [105]. With the number of external nodes set to five, we aim to find two distinct configurations
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polymers 
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D

Figure 3.1: Essential prionic properties. (A) The system can exist in two distinct states, known

as the prion (P) and healthy (H) conformations. (B) The prion conformation is capable of forming

polymers with other prions; the healthy conformation is not. (C) The lock and key process of the

prion conformation and the healthy conformation, whereby a dimer is formed. (D) Propagation of

the prionic conformation in a mono-disperse solution when one prion is present.

representing the H and P structures. First, we require that the P structure self-binds with lower

energy than the H structure. We search for a P polygon where three external nodes can align

with three nodes of another P polygon (Figure 3.1B). Second, the binding process must allow the

formation of a tower-like structure of P polygons, while the H polygon should resist self-binding

to prevent assembly. To ensure that this is the case, we limit the maximum number of interacting

nodes between two H polygons to two (Figure 3.1B). Third, we search for a lock-and-key mechanism

[106], whereby the P and H polygons interact via three external nodes, with the H polygon requiring

a small deformation for binding to the P polygon (Figure 3.1C). This imperfection disrupts the rate

symmetry between free and bonded states (Figure 3.1D).

To guarantee mechanical rigidity, external nodes defining the polygons must connect to a set of

internal nodes [97] (Figure 3.2A), thereby allowing for two stable conformations of a single structure.

These conformations have identical energy minima (Figure 3.2B)[101, 107]. The two conformations
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Figure 3.2: Bar-joint mechanical prion model. (A) Schematic of the structure. (B) Bond

energy of the free system evaluated along the reaction path between the H and P conformations for

the structure shown in panel (A). (C) Schematic of the P and H conformations interacting. (D)

Bond potential energy between the P-H dimer and the P-P dimer evaluated along the reaction path.
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are isolated from each other by an activation energy barrier that prevents transitions from one state

to another.

The two interacting structures exhibit prominent interactions within the lock-and-key region, whereas

other interaction configurations are inhibited by design (Figure 3.2C). The potential energy in the

P-P configuration equals that of two separate P structures, an energy minimum. In contrast, the

P-H configuration’s potential energy is notably higher due to misaligned lock-and-key areas (Figure

3.2D). The barrier’s potential energy remains largely unaffected. This reduced activation energy

required for P-H to P-P transition drives the prionic effect and alters the symmetry of configuration

rates .

Through this search process, we discovered several candidate mechanical prions in the space of

pentagonal bar-joint linkages. Although their static energy landscape suggests prionic behavior, it

remains essential to evaluate them under dynamic conditions, wherein multiple undesired effects

can appear that prevent the transition from P-H to P-P. Examples of these undesired effects include

internal node binding issues, additional undesirable stable configurations, and entropy inhibiting

the reaction [108]. The prior design phases just described do not address these challenges. Hence,

we must evaluate the behavior for the specific pair of configuration states under Langevin dynamics.

3.4. Validating prion properties

We track the dynamics of structures undergoing Langevin dynamics by quantifying the sum of

squared differences in their internal angles relative to reference conformations and subsequently

assign each structure to the closest reference conformation. In cases where both distances exceed

defined thresholds, we classify the structure as denatured, indicating that it has adopted an un-

desired conformation. These labels are then utilized to analyze the dynamics via a discrete-time

Markovian model, from which we derive transition rates through model fitting over a coarse-grained

time scale . We investigate the evolution of an ensemble comprising P and H structures and track

the concentrations of both interacting (bound P-H and P-P) and non-interacting (free P and H)
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form. The inset shows the deviation from the fitting at higher temperatures. (B) The two curves

show the equilibrium distribution of the prion population in the free (in dark purple) and bound

(in dark blue) cases given the inverse temperature. The inset shows four examples of the dynamics

of each monomer (P and H) inside a dimer (PH) at various temperatures. The temperatures are

indicated by arrows beneath the plot. Here, we used the same reaction coordinates as those in

Figure 1.C.
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structures.

The rates corresponding to the structure discussed in this paper is illustrated in Figure 3.3A. In

the free scenario, both the H→P and P→H rates are indistinguishable within the given margins of

uncertainty. In the bound scenario, however, the H→P rate becomes up to two orders of magnitude

faster, thereby breaking the symmetry. At lower temperatures (βε = ε
kBT

> 3× 104) P→H conver-

sions within the bound state become infrequent, with none observed within the time scale feasible

to the simulation. The observed rates indicate that we successfully designed a prionic structure.

Equilibrium distributions, derived from a Markov model based on observed transition rates be-

tween the coarse-grained states of the different types of structures, are shown in Figure 3.3B. The

stationary distribution is asymmetric; bound systems approach 100% prion conversion, whereas

free systems approach only 50% prion conversion. At low temperatures (βε > 103), both free

configurations are thermodynamically stable, and no other conformations are present. We arrive

at equilibrium distributions (Figure 3.3B) by using simulation rates that have been derived from

an extended Arrhenius model [109]. The model accurately characterizes dynamic behavior at low

temperatures (Figure 3.3A). We observe super-Arrhenius behavior, or lower-than-expected reaction

rates, at low temperatures. This effect, also seen in the kinetics of protein folding [110], in collective

behaviors [111, 112], and in enzyme-catalyzed reactions [113], is generally related to an increase in

the activation energy or a change in the transition state at lower temperatures [114].

The inset of Figure 3.3B displays four time traces that illustrate the conformational changes of the

bound structure, all initiated from the P-H conformation. The third trace displays the system at

a temperature where unbound transitions are exceedingly rare. In this trace, the bound H visibly

transitions to the P conformation, as highlighted in the magnified portion of the plot. We observe

a subtle conformational shift in the P structure during the H’s transformation, which appears to

begin when the initial H structure is halfway through its transition. This timing suggests that the

P structure (to which the H binds) actively participates in the conversion process. Furthermore,
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the final stability of P-P dimers is not simply an outcome of the stability of individual P and H

monomers. This stability of large assemblies in the prionic state is crucial for prion functionality.

We note a difference in the level of random fluctuations between the healthy and prion states at all

temperatures (see Figure 3.3A inset). These differences are likely due to the empty key-lock site for

the healthy configuration, which makes these networks less rigid overall while the prion’s degrees of

freedom become constrained upon binding.

We observe non-monotonic fluctuations (U-shaped) for the bound configuration at high tempera-

tures that cannot be accurately described by an Arrhenius-type equation (Figure 3.3A, inset). This

phenomenon is explained by the ability of the bound networks to attain new, slightly deformed,

conformations at high temperatures that are not labeled as denatured. This ability can be seen in

the first time trace (Figure 3.3B), where the curves exceed the H conformation and remain stable

for an extended period before shifting to the P conformation. This conformation is stabilized by

the rigidity imparted by binding with the prion, and the final structure exhibits greater stability at

elevated temperatures, resulting in its exclusive presence in the bound state.

3.5. Experimental Validation

To experimentally validate the properties of the mechanical prions we identified, we built a tabletop

environment where the dynamics of structural configurations could be evaluated in a proof of concept

experiment. We 3D-printed spring-like edges that extend and contract (Figure 3.4A), and we placed

magnets at each node to allow interactions across structures. We simulated a thermal bath using a

stepper motor that agitates the mechanical structures at varying speeds. Transition rates observed in

the free and bound states qualitatively align with our theoretical predictions, showing the expected

rate asymmetry (Figure 3.4B). The supplementary information includes videos of the P-H dimer

converting to the P-P configuration, along with additional details of the macro-scale model.
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Figure 3.4: External mechanism and macroscopic model. (A) (top) Macroscopic model

exhibiting the healthy conformation. (bottom) Macroscopic model exhibiting the prion conforma-

tion. (B) The transition rate exhibited by the macroscopic model is similar to the transition rate

exhibited by simulated structures. The inset shows one of the macroscopic models used in the

experiment. Further details can be found in the Supplement.
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3.6. The lock-and-key mechanism

The lock-and-key mechanism is crucial for eliciting prionic behavior. Intuitively, the key and lock

should have the same geometry to enable the key to align with the lock. However, when two

networks with perfect alignment bind to one another, the overall shape of the constituent networks

does not change. This fixity is due to the fact that Lennard-Jones potentials exist at significant

levels only between matched node pairs, not between distant misaligned nodes. Therefore, the key-

lock areas must necessarily be misaligned to force internal reorganization in the H monomer. This

misalignment of external nodes breaks the symmetry in the rates between the free and the bonded

states (see Supplement).

While the external node configurations establish the lock-and-key mechanism, the positioning of

internal nodes also plays a crucial role in this mechanism. The internal nodes ensure the stability

of the mechanical prion while simultaneously facilitating conformational changes. Their placement

greatly influences the transition temperature by changing the structure’s stability. We find that

prionic behaviors of mechanical structures are robust to a wide range of choices of the precise

locations of the internal nodes .

3.7. Discussion

In aggregate form, mechanical prions offer a variety of useful architectures, powerful functions, and

capacities for design and control. Prion-like mechanical networks can help build fast and irreversible

sensors, leveraging their unique polymerization properties and switching capabilities. The switching

rates of these structures can be fine-tuned by designing their binding sites to preferentially promote

aggregation over fragmentation [115, 116], with a specific focus on the large-scale structures that

are targeted for production. Similar to their biological counterparts that produce amyloid plaques,

mechanical prions can assemble into durable 2D sheets (Figure 3.5A) [117] and 1D fibrils (Figure

3.5.B). Such constructions have been explored, for example, using prion-inspired peptides [118, 119,

120, 121, 122]. Monodisperse prion solutions, which restructure after seeding, have potential utility
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Figure 3.5: Potential applications. (A) Prions could have multiple binding sites, thereby al-

lowing for higher dimensional structure. Here, a simple 2D sheet is represented. (B) Prions could

be utilized in the functionalization of nanoparticles, where a change in conformation could result

in a change in solubility or the formation of structures such as fibrils. (C) Prions could be used to

create structures that are capable of disassembling themselves, triggered by a change in the confor-

mation of one of their components. (D) The transformation of healthy assembled structures into

non-interacting prions can be leveraged as a switching mechanism through the disassembly process.
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in scavenging and control processes [120]. Recent advancements in DNA origami have facilitated the

fabrication of scaled-down mechanical structures, featuring joints, sliders, and hinges, suggesting

the potential for our structure to be constructed using similar methodologies [123, 124, 125].

Prions are often associated with pathological aggregates, but recent studies have also indicated

their role in various beneficial biological functions [126, 127] and display complex prion-prion inter-

actions [128]. This work reshapes our understanding of prionic dynamics, suggesting that not all

aggregates are pathological, with some having potential functional utility. For instance, "healthy"

configurations can be aggregated to design self-disassembling scaffolds (Figure 3.5C). Inspired by

these findings, future approaches might introduce prions into synthetic materials, potentially for

drug delivery systems where a prion-composed shell safely disintegrates at its target [129] (Figure

3.5D).

In addition to its potential practical utility, our work also offers several directions for further the-

oretical exploration. While we limit our attention to two-dimensional frames, three-dimensional

mechanical structures can similarly be discovered and examined using the techniques we describe

here. Symmetries can be imposed to the structures and subsequently utilized as foundational ele-

ments for constructing more complex physical or dynamical structures [130, 12]. Future work could

also seek to reduce the degree of internal nodes, thereby reducing the potential for obstructions and

easing the fabrication of macroscale structures.

3.8. Method

3.8.1. Design of mechanical prions

In this section, we offer a summary of the methodologies employed in this study. For more detailed

information, refer to the Supplementary Information .
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External nodes

First, we randomly generate pentagons with side length 1. We filter non-simple and pentagons with

an internal angle of less than 10 degrees. This filtering process facilitates the creation of shapes that

are simpler to manufacture. We require healthy polygons to self-bind poorly and prionic polygons

to self-bind strongly. We calculate a fitness value f to achieve this goal, representing the binding

affinity between two polygons . To minimize this fitness for pairs of polygons, we use the iterative

closest point (ICP) shape registration algorithm [131]. Each polygon is labeled as a potential healthy

structure if its fitness is less than or equal to nH and as a potential prion if its fitness is greater

than or equal to nP . These values ensure healthy structures engage in pairwise node binding, while

prions require at least three nodes. Given that all edge lengths are identical and we are dealing

with simple pentagons (with non-intersecting edges), each pentagon can always bind to itself at a

minimum of two nodes. To prevent their self-assembly, we ensure that these configurations are not

stable under our chosen temperature conditions.

Internal nodes

The pentagons we select as candidate mechanical prions are not rigid, possessing several conforma-

tional degrees of freedom. We enforce rigidity by adding nin nodes to the interior while avoiding

states of self-stress. The nin nodes are incorporated to allow for the existence of two stable confor-

mations . We use a conformational solver to determine the position of the internal nodes to allow

transition between both conformations [101]. We try 10000 solutions for each pair with a length

discrepancy tolerance of 0.01ℓ, discarding any duplicate solutions.

3.8.2. Energy landscape

We use Lennard-Jones potentials for inter-node interactions and model edges using Hookean spring

dynamics. We employ the Nudged Elastic Band (NEB) method [132] as implemented in LAMMPS

[104] to compute the static scenario and assess the activation energy between two conformations.

The initial configuration is represented by the H monomer (or the HP dimer), and the final con-
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figuration is represented by the P monomer (or the PP dimer) for the free (or bonded) case. An

initial relaxation step guarantees that the newly associated structures will settle into their nearest

energy minima. For both cases (bonded and free), we use a step size of 0.001 with 12 replicas. We

remove structures where the activation energy of the free setting is higher than the bonded setting

(see Supplementary Information ).

3.8.3. Dynamical Analysis

We simulate the dynamics of conformational change using the Langevin formalism in the Large-

scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). In our simulations, for every

candidate pair that shows a promising energy landscape, we analyze their dynamical properties for

temperatures ranging from 1e−8 1
ϵ to 1e−3 1

ϵ . We simulate 12000 time points and record the positions

of all structures at 600 evenly spaced instances. We double the number of time steps during every

run of the simulation until convergence is achieved. Simulations start in one of three configurations,

each featuring 30 structures within a 15 × 15 box. In the first two configurations, we assess the

stability of the healthy and prionic structures. The last configuration consists of pairs of prions and

healthy structures. We position the pairs near their binding sites to facilitate interaction during

simulation. Labels are assigned by computing the distance of each structure at every time point

with the prionic and healthy configurations . We compute reaction rates and steady-state ratios

from the sequences of labels modeled as Markov processes. Rate curves are adapted to fit a modified

Arrhenius equation, as described in [109], of the form:

k = k∞ exp

[
− EA

R(T − T0)

]
.

3.8.4. Macroscopic Model

As a proof-of-concept, we develop a macroscopic model utilizing two types of spring-like edges .

All edges were 3D printed using ultraviolet-sensitive resin and assembled with Chicago screws. We

fix rare earth magnets to the screws to allow interactions between the external nodes, and add a
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printed cap for centering. The cap’s thickness was calibrated to regulate the holding force between

nodes, thereby ensuring that structures remain bound when three nodes interact, but not when only

two nodes interact.

To perform experiments to validate prionic behavior, we use an arm of length 100 mm, manipulated

by a stepper motor. We use one of the nodes to attach structures to the arm. The stepper motor

undergoes oscillations spanning 1 radian for 20 cycles. Between each oscillation set, we reset the

conformation, and randomize the angle between the manipulating arm and the structure. We

regulate angular speed using the number of steps per second, where each step measures 1.8 degrees.

We sweep speeds from 50 to 250 steps per second.

3.9. Appendix

Here, we provide a detailed account of our methods. First, we outline the process of identifying

mechanical structures capable of exhibiting prionic behavior. Second, we describe how we identify

the minimum energy path between two distinct conformations. Third, we describe the simulation

process of validating prionic properties in a thermal bath. Fourth, we discuss the role of external

and internal nodes in mechanical prions. Finally, we offer design and experimental details for a

macroscopic prion prototype.

3.9.1. Designing mechanical prions

In this section, we detail the process of searching for mechanical prions in the space of mechanical

networks. We begin by considering the external shape of potential prions and “healthy” mechanical

structures. We then highlight various filtering stages, starting with the external shape, moving to

self-binding properties for individual mechanical structures, and finally selecting pairs that exhibit

optimal prionic functionality together.

We employ a bar-joint linkage model. We treat a mechanical prion as comprisingN interacting nodes

of unit mass (m∗ = 1) where LJ units are employed. The set of nodes, denoted as V = {1, · · · , N},
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is embedded in a two-dimensional space. The position of node i in molecule k is given as x(i)
k (t). We

partition the node set into two distinct groups: Vext, representing the exterior nodes responsible

for polymer binding, and Vint, the interior nodes. We denote the set of connections between nodes

as E , and we set the spring constant, K, for connections to 1. An entry (i, j) ∈ E implies that node

i connects to node j. An edge (i, j) belongs to the set of exterior edges Eext if i and j both belong

to the set of exterior nodes Vext.

External shape

We set the external edge length l to 1.0 and the number of edges to 5. We generate pentagons at

random by selecting three arbitrary angles in the range [0, 2π]. The last two angles are determined

based on the first three. We then filter the set of random polygons to ensure that the distance

between the starting and ending points of the polygons is under 0.002, filtering them to adhere to

the length criteria. While more sophisticated methods exist, our approach is unbiased and sufficient

for smaller-sized polygons. The space of all pentagons formed this way is a four torus and can be

seen in Figure 3.6.A. In this context, the polygon symbolizes the external interaction structure,

which needs to allow for the creation of prion aggregate. Therefore, we introduce conditions to

ensure the polygons are simple (non-intersecting) and maintain a minimum internal angle of 10

degrees, as shown in Figure 3.6B (left). This condition on the minimum internal angle ensures that

external nodes are not too proximate, given their uniform distance, thereby minimizing excessive

interactions.

Self-binding requirements

We require healthy polygons to self-bind poorly and prionic polygons to self-bind strongly. To

achieve this distinction, we calculate a fitness value f , representing the binding affinity between two

polygons, such that,
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g(xk,xl) =
g2min
2

∑
i∈Vext

∑
j∈Vext

max

(
1

d(x
(i)
k ,x

(j)
l )2

, gmin

)
(3.1)

f(k, l) = min
xk,xl

g(xk,xl), (3.2)

where d(x(i)
k ,x

(j)
l ) is the distance between nodes i and j from structures k and l, respectively. To

cap the contribution to g of two bonded nodes, we define gmin as fmin = 1
d2min

and set dmin to be

0.001ℓ. To minimize this fitness for pairs of polygons, we use the iterative closest points (ICP) shape

registration algorithm [131]. For both polygons, we generate a set, Sm
k , the set of all m adjacent

nodes. For each node pair (s, s′), where both s and s′ belong to Sm
k and m ∈ {2, 3, 4}, we adjust

the position and orientation of x⃗k to minimize their overlap. We set the translation of xk such that

the center of mass of the node subset s aligns with the center of mass of the node subset s′ located

at x′
k. The rotation is then selected to minimize the least squares distance between the two subsets.

The subset size m is chosen from the set {2, 3, 4} because, for a pentagon, these values represent

the only non-trivial bindings that do not result in complete overlaps. For every initial position

identified for the pairs (s, s′), we apply the ICP algorithm with a maximum of 20 iterations and a

tolerance set to 0.005ℓ. These steps provide us with a comprehensive list of potential self-binding

configurations for a polygon.

However, not all self-binding configurations are valid. As such, we systematically eliminate pairs

(s, s′) that display an overlap area greater than 0.02 for every identified pairing. It is worth high-

lighting that the step to mitigate overlap is introduced mainly based on our conceptualization of

these polygons as rigid structures. Each polygon is labeled as a potential healthy structure if its

fitness is less than or equal to nH and as a potential prion if its fitness is greater than or equal to nP .

For pentagons, we set nH and nP to 2.1 and 2.8, respectively. These values ensure healthy struc-

tures engage in pairwise node binding, whereas prions require at least a three-node binding. Figure
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3.6.C displays the various self-binding levels and their respective fitness values. Given that all edge

lengths are identical and we are dealing with simple pentagons (with non-intersecting edges), each

pentagon can always bind to itself at a minimum of two nodes. To prevent their assembly, we ensure

that these configurations are not stable under our temperature conditions. Figure 3.6.D presents

the refined space of polygons, using the color scheme from panel C to indicate their self-binding

capabilities.

Inter-binding requirements

Having curated a list of candidate healthy and prionic polygons, we can now identify pairs, (H,P ),

that adhere to our interaction rules and objectives. Let xH and xp be the external nodes corre-

sponding to the healthy and prionic polygons, respectively. We use the same fitness methodology

we employed for self-binding to evaluate their inter-binding characteristics. We filter pairs according

to the following rules:

1. f(H,P ) ≤ f(P, P ); this requirement enforces that the binding strength between prions is at

least equivalent to the strength of the healthy-prion bond.

2. f(H,P ) ≤ f(H,H)+∆f ; this requirement enforces that the bond between a healthy structure

and a prion takes precedence over the self-binding of two healthy structures. This requirement

facilitates the lock and key mechanism detailed in the main text (see Figure 3.6.E).

3. Paired subsets of bonded nodes in the H − P and P − P bindings must be identical, thereby

enabling healthy structures to transform into prions.

For this study, to ensure imperfect H − P binding, we set ∆f = 0.5.

Placement of internal nodes

The pentagons we select as candidate mechanical prions are not rigid but instead possess confor-

mational degrees of freedom. Nevertheless, they must maintain rigidity to preserve their shape in a
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Figure 3.6: Space exploration and prion design. A. Pentagon space. Each point denotes a 2D

pentagon structure. This space is topologically equivalent to a four-torus. Shadows represent pro-

jections on three axes. B. Polygon criteria. External polygons must meet two primary conditions:

a specified minimal angle and no self-intersections. (Continued.)
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Figure 3.6: (Previous page.) C. Self-binding criteria. Polygons vary in their capabilities. Low-

fitness polygons can primarily interact through pairs of nodes with themselves, whereas high-fitness

polygons exhibit more interacting nodes, resulting in enhanced bound stability.D. Filtered pentagon

space. Polygons in this set adhere to the criteria outlined in panel B and are color-coded consistent

with panel C. The space now appears fragmented, with prions frequently located at the ends of

elongated filaments. E. Boundary Mismatch. The mechanism necessitates a mismatch in the

interacting boundaries of the two polygons. This discrepancy elevates the potential energy and

facilitates a shift in the pathway. F. Internal Nodes. Pairs are derived from the sets of healthy

polygons and prions. Internal nodes and edges (depicted in blue) are positioned to ensure zero

potential energy for both external conformations. A potential energy barrier separates these two

conformations. G. Prionic Behavior. The search procedure identifies structures that, similar to

prions, prefer a specific conformation during interactions.

bath. We enforce rigidity by adding nin nodes to the interior, thereby reducing the conformational

degrees of freedom to zero. To avoid states of self-stress, we connect internal nodes to a smaller

subset of external nodes. If H represents the energy of a mechanical structure, then the equation

∂H
∂x = 0 admits only rigid-body transformations as its solutions [97]. Therefore, if we set nin = 1,

it follows that
∣∣Exy

H

∣∣ = 4. Given that we only consider the space of pentagons, this choice would

considerably restrict potential dynamics, as all nodes, barring one, would connect to the sole central

node. Therefore, we set the number of internal nodes nin to two. The corresponding number of

internal-to-external edges is given by

∣∣Exy
H

∣∣ = 2nin + next − 3, (3.3)

where next = 5 denotes the number of external nodes.

Let yH and yP denote the positions of internal nodes in the healthy and prionic configurations and

let Exy represent the set of edges connecting internal nodes to external nodes. Given the locations
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of external nodes, xH and xP , our goal is to determine yH and yP , such that,

d(x
(i)
H ,x

(j)
H ) = d(x

(i)
P ,x

(j)
P ) ∀(i, j) ∈ Exy

H . (3.4)

By setting this condition, we ensure that every edge in Exy has a consistent edge length in both the

healthy and prionic structures.

We evaluate random edge allocations of Exy
H for every pair H and P . The Maxwell-Calladine

equation does not specify node positions or edge lengths, rij . Therefore, we use a conformational

solver to determine y [101]. We try 10000 solutions for each pair with a length discrepancy tolerance

of 0.01ℓ, discarding duplicate solutions. We then sample the identified manifold to ensure complete

coverage. In our model, their solutions are independent since the internal nodes do not interact with

each other through edges. Consequently, the complete manifold is the product of the manifolds for

each individual internal node. Figure 3.9 presents an illustration of such a manifold. The lengths

of all edges rij are consequently established by determining the position of the internal nodes and

their connection topology.

3.9.2. Energy landscape

In this section, we detail the process of identifying the minimum energy path between two confor-

mations of a mechanical structure. This analysis aims to pinpoint pairs of structures that show

decreased activation energy when interacting with the prionic conformation. We specifically look

for pairs of structures, H and P, where the energy barrier to transition from H to P is reduced when

a P is bonded to both H and P. If the energy barrier increases or remains the same, it would not

lead to the formation of a prion because in these structures, transitioning to the P conformation

while bound would not be facilitated (a crucial characteristic of prions). This step is what disrupts

the rate symmetry in the system.

We use Lennard-Jones potentials for inter-node interactions and model edges using Hookean spring

69



dynamics. This non-rigid bar construction enables the system to explore states beyond the zero-

energy manifold at temperatures above absolute zero [99].

The total energy of a set of structures {1, · · · ,M} is denoted asH(X1,M ), where X[1,m] = (x1, · · · ,xM )

represents the kinetic (Ekin), bond (Ubond), and interaction (Uint) energies such that

H(X[1,M ]) =
∑

k∈{1,...,m}

Ekin(xk) + U(xk,X[1,M ]), (3.5)

U(xk,X[1,M ]) = Ubond(xk) + Uint(xk,X[1,M ]), (3.6)

Ekin(xk) =
m

2

∑
i∈V

ẋ(i) · ẋ(i), (3.7)

Ubond(xk) = K
∑

(i,j)∈E

(d
(i,j)
kl − rij)

2, (3.8)

Uint(xk,X[1,M ]) = 4ϵ
M∑
l=1

∑
i∈Vk
j∈Vl

(
σ

d
(i,j)
kl

)12

−

(
σ

d
(i,j)
kl

)6

, (3.9)

where d(i,j)kl is the distance between nodes i and j and rij is the relaxed length of the corresponding

bond. We employ the Nudged Elastic Band (NEB) method [132] as implemented in LAMMPS [104]

to compute the static scenario and assess the activation energy between the two conformations. The

NEB method is a computational technique to find the most probable transition pathways between

an initial and final system state (here, the two conformations). It uses a series of copies of the

system (replicas) connected by virtual elastic bands to map the energy landscape between two

states, thereby allowing for the identification of the minimum energy path and associated energy

barriers. In the bonded scenario, as an initial approximation, we replace bonded nodes with a single

node and adjust the mass proportionally. The initial configuration is represented by the HP dimer

and the final configuration is by the PP dimer. An initial relaxation step guarantees that the newly

associated structures will settle into their nearest energy minimum. For both cases (bonded and
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free), we use a step size of 0.001 with 12 replicas.

For every pair of candidate polygons and every solution of interior nodes, we compute the free

(Efree
A ) and bound (Ebound

A ) transition energies. Any structure where

Ebound
A ≪ Efree

A , (3.10)

should act as a prion. However, this may not always be the case due to the limitations of the NEB

technique. NEB can get stuck in local minima, especially when multiple pathways exist, or the

energy landscape is non-convex. Moreover, the method only offers a static representation of the

energy landscape, neglecting any evolution with time. Nonetheless, given that the NEB approach is

several orders of magnitude faster than conducting extended dynamic simulations, it proves valuable

in screening potential prions. We address these shortcomings through dynamic analysis to verify

that the candidate structures discovered by NEB are indeed prions.

3.9.3. Dynamical Analysis

Dynamical simulation We begin by detailing the thermal bath simulation methodology and

the structures’ dynamics in their respective unbound and bound states. We simulate the dynam-

ics of conformational change using the Langevin formalism as operationalized in the Large-scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS). We can write the force on a node i as

F (i)(xk,X[1,M ]) = −∇Um(xk,X[1,M ])

− γ ∗m ∗ ẋ(i)
k + F

(i)
k,sol,

where ∇Um(xk,X[1,M ]) represents the gradient of potential energy of the system. The second

term, γ ∗ m ∗ ẋ
(i)
k , represents the frictional drag and/or viscous damping. For normalization, we

set the damping coefficient γ to 1. The third term, F (i)
k,sol, is the force exerted by the imaginary
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Figure 3.7: The system’s properties. A. Energy landscape attainable from the two conformations

(healthy, prion) at the temperature under analysis. Conformations are projected onto the 2D plane

using principal components analysis (PCA). The red trajectory indicates the minimum energy path

between the two conformations in the free case. B. Illustration of the external shape manifold used

to study its impact on prionic properties.

solvent particle that exchanges energy with the nodes through random interactions with a magnitude

controlled by the temperature T . This force has a magnitude proportional to 2γTm [104].

In our simulations, for every candidate pair that showed a promising energy landscape, we analyze

their dynamical properties for temperatures ranging from 1e−8 1
ϵ to 1e−3 1

ϵ . We simulate 12000 time

points and record the positions of all structures at 600 evenly spaced instances. We double the

number of time steps during every run of the simulation until convergence is achieved. Simulations

start in one of three configurations, each featuring 30 structures within a 15×15 box. In the first two

configurations, we assess the stability of the healthy and prionic structures. The last configuration

consists of pairs of prions and healthy structures. We position the pairs near their binding sites to

facilitate interaction during simulation.

Analyzing trajectories of conformational change In the manuscript, we examine in silico

trajectories of conformational change. We assign labels to intermediate states during simulations and

analyze the resulting coarse-grained sequences assuming the Markov property. The labels denote
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one of three general states: healthy, prionic, or denatured. To assign these labels, we compute

distances between each intermediate state and the prionic and healthy configurations. For a given

structure in conformation c, let ∆ be the set of all triplets of connected nodes (i, j, k), and let θcijk

be the angle between them. We define the distance D as

D(xk, c) =
∑

(ijk)∈∆

(θcijk − θkijk)
2.

We first measure the distance between the healthy and prionic states, Dmax = D(H,P ). For

structure k, we then measure distances to the healthy and prionic configurations as DH = D(xk, H)

and DP = D(xk, P ), respectively. If both DH and DP exceed Dmax, we label k as being denatured.

Otherwise, we assign the label corresponding to the smaller value between DH and DP .

To facilitate visualization of dynamics we perform principal component analysis (PCA) on the set of

all conformations. This process allows us to project states at all temperatures to the nearest point on

the reaction pathway. Specifically, we compile all θcijk as row vectors into the data matrix containing

all time points and apply PCA, defining reaction coordinates as the first principal component. This

process is carried out dynamically across our extensive spectrum of analyzed temperatures, all

within the same matrix, to capture the complete range of motion. This component accounts for

more than 95% of the data variance (see Figure 3.7.A). Despite its utility, this approach requires

extended numerical simulations to acquire data for PCA at all temperatures. Therefore, we reserve

this method for plotting and use an alternative, simpler approach for simulations.

Rate computation We compute reaction rates and steady-state ratios from coarse-grained se-

quences of conformational states modeled as Markov processes. Rate curves are adapted to fit a

modified Arrhenius equation, as described in [109], of the form:

k = k∞ exp

[
− EA

R(T − T0)

]
.
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Figure 3.8: Role of external nodes. The prionic behavior is examined as a function of the

mismatch distance, ∆, between the pair of prions and healthy conformations. Each pair features

similar internal node positions and minor differences in external geometries compared to the example

provided in the paper.

3.9.4. Additional considerations

Properties of the External Node

In this section, we describe how we analyze the impact on the prionic property of the external

node. The goal is to study slightly deformed polygons with similar internal structures and assess

the effects of such deformations. To achieve this goal, we begin with the initial pairs from the main

text and choose polygons close to the prionic external polygon within the filtered manifold (see

Figure 3.6.D). The manifold segment resembles an arrowhead, as shown in Figure 3.7, where the

vertical axis in the illustration corresponds to the base angle. At the top, the symmetric case is

observed, and mirror reflection along the vertical axis appears on either side of the arrowhead. The

dimension corresponding to the arrow’s thickness is associated with the cusp angle. At this stage,

only the external polygon is present. Internal nodes are introduced to minimize the distance to the
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original prion. This aim is achieved by navigating the manifold formed by the internal points and

selecting the nearest one.

The difference, ∆, is determined by the initial distance between nodes positioned for binding before

the actual interaction. A higher value suggests a lesser fit between the two shapes, implying increased

stress during their interaction. The difference in activation temperature, called here prionicity, is

defined as

Pr(V, E) =
Tfree − Tbound
Tfree + Tbound

, (3.11)

where Tfree and Tbound represent the minimum temperatures at which over 40% of the limit distri-

bution consists of prions in the free and bound scenarios, respectively. The 40% threshold is selected

as it is below the typical 50% (even mixture) observed for the free case.

In Figure 3.8, we plot prionicity, Pr, as a function of the mismatch, ∆, between the key-lock areas

for various mechanical prions. All prions share nearly identical internal and external shapes, with

the exception of the external lock region. We measure ∆ as the smallest distance at which nodes

from the key and the lock can be paired in P-H dimers without forcing conformational changes. We

find that prionicity increases with increasing key-lock mismatch.

Properties of the Internal Nodes

In this section, we examine the influence of internal nodes on the prionic behavior of mechanical

structures. We begin by detailing some of their characteristics and then provide insights into the

methodology employed to reach these conclusions.

As mentioned earlier, an important property of the placement of the internal node in our framework

is that the lengths of the edges between the internal and external nodes must be the same in both

conformations to meet the system’s energy requirements. Therefore, given the external shape, the

number of internal nodes, and their connections to the external nodes, the internal nodes can only

occupy certain positions within the polygon. Figure 3.9.A) displays the potential positions that
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Figure 3.9: Role of internal nodes A. The prionicity, a metric used to quantify the reduction in

transition temperature caused by the interaction of the dimer compared to that of the individual

monomers, as a function of the position of the two internal nodes. B. The transition temperature

of the prion. C. The prionicity as a function of the mismatch distance ∆ for a pair of prions and

healthy conformations with distinct internal nodes and minimal variations in their external shapes.

the internal node can assume for the primary structure discussed in the paper. The internal node’s

position in the healthy structure dictates its location in the prion and vice versa. Furthermore,

the positions of the individual internal nodes are independent of one another. In this particular

polygon, with its distinct connection pattern to the external node, the potential placement space

for internal nodes is largely characterized by near-linear trajectories. Specifically, two separate

connected components define the placement set for one node. While these sets are not always

strictly linear, they predominantly tend to be. Given that no edges are connecting them and the

external polygon is fixed a priori, the two systems of equations operate independently. Therefore,

the solution space for both nodes in our system is the product of the solution space for each node.

Consequently, the design of our example prion has two additional degrees of freedom, which affect

its stability and transition temperature.

The system’s prionicity exhibits intricate variations based on the internal node’s position, yet it

maintains a similar magnitude between the two connected components of the domain (see Figure

3.9.B). The white point indicates the position of the structures shown in the paper. Given its

closeness to a region with reduced prionicity and more favorable zones, this placement might appear
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counterintuitive. However, this choice was driven by two primary factors. First, it was chosen

because its transition temperature was within our desired range: not so high as to complicate

convergence in large-scale numerical simulation, yet not so low as to render the physical model

unstable (see Figure 3.9.C). Second, to construct the physical model, the central nodes must not

interfere with one another and remain sufficiently distant throughout the standard range of motion to

avoid interaction. While the present selection can be further optimized, it sufficiently demonstrates

the effect while potentially leaving room for enhancement. Interestingly, most positions of the

interior nodes give rise to valid prions that perform adequately, implying that precise placement of

the interior nodes is less critical.

The relation between prionicity and the transition temperature is quite complex, as the internal

node placement affects Tfree and Tbound differently. The temperatures Tfree are shown in Figure

3.9.C, where we observe a stark contrast between the two disconnected regions of the solution space.

Tfree also indicates that the two internal nodes engage in synergic interactions. Thus, even though

their placements, based solely on energy levels, appear independent, the final selection must consider

their interactions.

3.9.5. Experimental Demonstration

This section provides insights into constructing the macroscopic model and elaborates on the exper-

imental setup employed. We created a macroscopic model for proof of concept, featuring external

edges of 57.80 mm in length (see Figure 3.10.A). To accurately replicate our design, we needed to

devise edges capable of extending and retracting based on a harmonic potential. Fortunately, the

model’s performance is not critically dependent on the exact specifications of its components. We

chose two types of edges that, while not perfectly matching the desired properties, still ensure the

system’s functionality. The first type, similar to a spring, contracts readily but exhibits limited

extension capabilities (see Figure 3.10.B). The second type, similar to a leaf spring, offers superior

extension properties compared to the first but is less robust (see Figure 3.10.C). Either can serve
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Figure 3.10: Macroscopic model drawing. A. Edge dimensions with color-differentiated layers

shown in the inset in millimeters. The lengths of these edges closely align with the structure

presented in the paper. Any variations in length may be attributed to the precision level maintained

during the construction phase. The arrangement prevents overlaps and collisions. B. The primary

edge type in the model. The central zigzag functions as a rigid spring, with force modulated by the

zigzag’s thickness (0.8 mm) and the edge’s thickness (3 mm). C. The secondary edge type, utilized

only once in the actual model, offers a broader range of expansion and contraction. While the entire

model could be constructed using this edge type, it would compromise the desired aesthetic appeal.

D. For the primary edge type, occasional translations or rotations of the spring component are

necessary to prevent collisions.
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as the primary edge type for the structure independently, but employing both proved effective.

In the physical realm, edges cannot pass through one another, which is a fundamental distinction

from our simulation. This characteristic necessitates careful consideration and adaptation in our

macroscopic model. We employed edges modified with off-center springs for the central nodes to

address this issue, as depicted in Figure 3.10.D. Additionally, we arranged the edges over several

layers, as illustrated in Figure 3.10.A, incorporating an unused layer to accommodate the sagging

of the central nodes.

All edges were 3d printed using ultraviolet-sensitive resin and assembled with Chicago screws,

as depicted in Figure 3.11. 3R mm rare earth magnets were affixed to the screw’s bottom to

allow interaction between the external nodes, and a printed cap was added for centering. The

cap’s thickness was calibrated to regulate the holding force between nodes, thereby ensuring that

structures remain bound when three nodes interact, but not when only two nodes interact.

In the experimental setup, an arm measuring 100mm in length is manipulated by a stepper motor.

The structures are attached to the arm via one of their nodes, leveraging the pre-existing magnet

(see Figure 3.11.C). The stepper motor undergoes oscillations spanning 1 radian for 20 cycles in

the experimental setup. Between each oscillation set, the conformation is reset, and the angle of

the structure around its attachment point to the arm is randomized. In the experiment, the speed

is regulated by the number of steps, each measuring 1.8 degrees, ranging from 50 to 250 steps per

second. Conformations were manually assessed, given the straightforward nature of the task and

the macro structure’s distinct transition to the prion conformation. Due to the limited extension

range of the edges, the macro model is constrained to transition only between the healthy and prion

conformations. Unlike the computational model, the physical version necessitates disassembly for

denaturation and is susceptible to breakage under excessive force.
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A B

Figure 3.11: Macroscopic model experiment. A. Experimental setup featuring two interacting

structures agitated by a stepper motor. B. Schematic of the fully assembled macroscopic model

used in the experiment.
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CHAPTER 4

QUADRUPOLAR RESONANCE SPECTROSCOPY OF INDIVIDUAL NUCLEI USING

A ROOM-TEMPERATURE QUANTUM SENSOR

This chapter is in press as Breitweiser, S. Alex*, Mathieu Ouellet*, Tzu-Yung Huang, Tim H.

Taminiau, and Lee C. Bassett. "Quadrupolar resonance spectroscopy of individual nuclei using a

room-temperature quantum sensor." arXiv preprint arXiv:2405.14859 (2024) [133]. As the co-first

of this paper, I was responsible for conceptualizing the research questions, analyzing the data, and

drafting the manuscript.

Nuclear Quadrupole Resonance (NQR) spectroscopy detects interactions between nuclear electric

quadrupole moments and local electric field gradients, aiding the study of molecular structures

at low bias magnetic field [134, 135, 136]. NQR spectroscopy is widely applied in security for

explosive and drug detection [137, 138, 139], pharmaceutical analysis of powders [140, 141, 142],

and thermometry [143, 144]. Due to the unique fields experienced by nuclei at each site, set primarily

by the valence electrons and, therefore, the corresponding chemical bonds, NQR studies reveal a

wealth of information that can be used to identify and characterize molecules and bulk materials.

However, due to the small magnetic signal generated by each nucleus, traditional radio-frequency

NQR is limited to use with macroscopic samples that contain large nuclear ensembles. The ability

to perform NQR on individual nuclear sites would open up the possibility of studying molecule-to-

molecule variations and dynamical changes due to local fields and structural changes, e.g.,protein

folding and drug-target interactions.

Quantum sensors based on optically active defects in semiconductors allow for investigations of much

smaller nuclear ensembles. Defect-based quantum sensors such as the diamond nitrogen-vacancy

(NV) center host electronic spin states that can be initialized and measured with laser light and

manipulated with microwave signals at room temperature. The electron spin qubits interact with
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proximal nuclear spins through unique magnetic hyperfine couplings that are determined by their

positions [145]. Using Dynamical Decoupling (DD) control sequences, it is possible to resonantly

amplify these hyperfine couplings [146], allowing high precision characterization and control of in-

dividual nuclei [147, 148, 149, 150, 151, 152]. NV-center quantum sensors have been employed

along with DD sequences to perform NQR spectroscopy of small nuclear ensembles in deuterated

molecules [153] and in hexagonal boron nitride crystals [154, 155]. In other regimes, NV-center en-

sembles have been used to boost the sensitivity of traditional NQR detectors for macroscopic powder

samples [136]. However, accessing individual nuclei and retrieving their quadrupolar Hamiltonian

has remained an open challenge.

In this work, we demonstrate DD-based, room-temperature NQR spectroscopy of the nitrogen-14

(14N) nuclei intrinsic to individual NV centers. In this way, the NV centers serve as both quantum

sensors and as analogs of individual molecules. The measurements reveal considerable variations in

the 14N quadrupolar and hyperfine parameters among different NV centers, as well as a previously

unreported term in the nuclear quadrupolar Hamiltonian that results from symmetry breaking. We

further observe correlations between the nuclear Hamiltonian parameters and the electronic Zero-

Field Splitting (ZFS) parameters, highlighting the potential of NQR spectroscopy to reveal details

of local chemical structure and deformations due to electric or strain fields. Finally, we design and

implement DD sequences that utilize the 14N quadrupolar Hamiltonian to facilitate initialization

and arbitrary quantum control of the 14N nuclear spin.

4.1. Electron-nuclear interactions in diamond NV centers

The NV center (Figure 4.1a) consists of one substitutional 14N coupled to a vacancy in the diamond

lattice. In its negatively charged state, the NV center hosts an electronic spin-1 state that undergoes

a spin-dependent optical pumping transition, allowing the spin state to be initialized and read out

optically [156]. This electronic spin interacts with the intrinsic 14N nuclear spin within the NV

center (≈ 99.7% spin-1 14N in natural abundance), as well as with 13C nuclei in the surrounding
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Figure 4.1: Electron-nuclear interactions in 14NV centers (a) Model of a diamond NV center

located within a solid immersion lens, composed of an electronic spin (purple) coupled to a 14N

nucleus (blue).(b) Pictoral representation of the Hamiltonian terms for 14NV. (c) Schematic of a

DD spectroscopy sequence. Initial and final π
2 pulses are in opposite directions, while decoupling π

pulses are XY8 symmetrized. (d) DD NQR features corresponding to the |mI = ±1⟩ to |mI = 0⟩

transitions (dips marked purple and red) appear in the presence of an off-axis magnetic field (

N = 64, B = 193G). A third series of dips corresponding to the |mI = ±1⟩ transition (marked

green) appears due to the quadrupolar asymmetry parameter, even without an off-axis magnetic

field. Panel (b) displays the energy levels associated with the peaks. (e) DD spectra for two different

NV centers (blue and orange), here with N = 32 pulses repetitions, reflect significant differences

in the 14N quadrupolar Hamiltonian. Data are shown with markers, along with best-fit simulation

results as dashed lines.
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diamond lattice (spin-12 , ≈ 1.1% natural abundance) and any other nearby nuclear spins. In the

isotropic case, ignoring the effects of strain or electric fields, the general Hamiltonian comprising

the electron spin interacting with a single nuclear spin is given by

H = DS2
z + E(S2

X − S2
Y ) + γeB⃗ · S⃗ +Hquad +Hhf + γnB⃗ · I⃗ , (4.1)

where S⃗ = (SX , SY , SZ) is the electronic spin operator, I⃗ = (IX , IY , IZ) is the nuclear spin opera-

tor, γe (γn) is the electronic (nuclear) gyromagnetic ratio, and B = (BX , BY , BZ) is the external

magnetic field. Figure 4.1b shows this Hamiltonian diagrammatically for the specific example of the

NV-center’s intrinsic 14N nucleus. The first two terms represent electronic zero-field splitting (ZFS),

followed by the Zeeman term for electronic spins. This is succeeded by the nuclear quadrupolar

term and hyperfine coupling and the Zeeman term for nuclear spins. The term Hhf represents the

hyperfine interaction, which takes the general form

Hhf = S⃗ ·A · I⃗ (4.2)

where A is the hyperfine interaction tensor. For 14NV, Hhf takes the simplified form:

Hhf = AZSZIZ +A⊥(SXIX + SY IY ), (4.3)

where AZ and A⊥ are the parallel and perpendicular hyperfine coupling strengths. The second

term in Eq. 4.3 generally does not affect the electron-nuclear dynamics due to the large mismatch

in energy splitting between the electron and nuclear spin states, leaving the parallel term as the

primary hyperfine-coupling effect.

The termHquad represents the nuclear quadrupolar Hamiltonian, which is nonzero for nuclear species
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with total nuclear spin I ≥ 1. The quadrupolar Hamiltonian can, in general, be written as [157]

Hquad =
eQVZZ

4I(2I − 1)
[3I2Z − I(I + 1) +

VXX − VY Y

2VZZ
(I2+ + I2−)] (4.4)

where e is the electron charge, Q is the quadrupolar moment unique to each nuclear isotope, VZZ =

∂2V/∂z2 is the electric field gradient along the principal nuclear axis, and VXX and VY Y are the

electric field gradients in the perpendicular plane. The principal axes are chosen so that |VZZ | >

|VXX | > |VY Y |, and the electric field gradient is diagonal in this basis. For a particular nucleus,

Eq. (4.4) takes the simplified form

Hquad = PI2Z + α(I2+ + I2−), (4.5)

where P and α are constant parameters representing the quadrupolar splitting and asymmetry

parameters, respectively.

Although the nuclear quadrupolar Hamiltonian term is distinct from the electronic spin, its effects

on the electronic spin can be observed via the hyperfine interaction using DD sequences as shown

in Figure 4.1c. Transverse terms in Hhf (the second term in Eq. 4.3) lead to rotations of the

nuclear state that depend on the electron spin projection. DD sequences amplify this interaction

since multiple small rotations accumulate when the spacing between pulses is resonant with the

hyperfine-shifted frequency of the nuclear Larmor precession, causing resonant series to emerge in

DD spectra [146].

Figure 4.1d shows an example of a DD NQR spectrum in which three distinct resonance series

can be observed. The series correspond to electron-spin-dependent transitions between the 14N

nuclear states as indicated in Fig. 4.1b. As discussed in the next section, the physics responsible for

transitions between nuclear states with |mI = 0⟩ ↔ |mI = ±1⟩ is different from those transitions

between |mI = ±1⟩ states. Nevertheless, the observation of all three resonance series constitutes a
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complete measurement of the nuclear quadrupolar Hamiltonian (Eq. 4.5), together with AZ . Since

the DD sequence extends the coherence lifetime of the electronic spin, this method allows extremely

precise determination of P for each nucleus and also reveals the existence of small α Hamiltonian

terms that had previously not been detected nor considered [156].

4.2. DD NQR spectroscopy

The 14N nucleus intrinsic to the NV center represents a convenient testbed to illustrate the physics

of DD-based NQR. Ideally, the C3v symmetry of the NV center should cause the asymmetry

quadrupolar parameter α to vanish. Moreover, in the presence of a purely longitudinal magnetic

field (BX = BY = 0), the axially-symmetric hyperfine Hamiltonian of Eq. 4.3 does not generate

nuclear spin rotations under DD sequences, since the magnetic field direction experienced by the

nucleus is independent of the electron spin projection. In real systems with reduced symmetry,

however, both of these conditions are relaxed.

In the presence of a weak transverse magnetic field (BX ≪ BZ) an effective perpendicular hyperfine

coupling term appears due to spin mixing [158], leading to an approximate hyperfine Hamiltonian

given by

Hhf ≈ AZSZIZ + F
γNBXA⊥
γeBZ

SZIX , (4.6)

where F is a constant that is particular to the 14N nuclear isotope [159]. Previous authors have

used this effective hyperfine interaction to observe nuclear quadrupolar interactions for NV ensem-

bles using electron spin-echo envelope modulation [160], to perform dc vector magnetometry using

single NV centers [159] and to realize high fidelity gates [161]. We use it in order to quantify the

quadrupolar Hamiltonian parameters via DD NQR spectroscopy. In a DD control sequence with

appropriate pulse spacing, the SZIX term in the effective hyperfine Hamiltonian facilitates electron-

spin-dependent rotations of the 14N spin (see Figure 4.1c), in analogy with the case for 13C nuclei

[146]. The rotations manifest in DD spectra as two distinct resonance series, each corresponding to
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one of the |mI⟩ = 0 to |mI = ±1⟩ transitions, with spacing given by

τk ≈ (2k + 1)π

2P ±Az ∓ ωN
(4.7)

where ωN = γNB.

Figure 4.1e shows the DD NQR spectra obtained by sweeping the pulse spacing near two such

transition resonances for two different NV centers. The shift in resonance position reflects differences

in P and AZ for these two NV centers. We use numerical simulations to fit DD NQR spectra acquired

using different N around these two resonances; see Supplementary Material I.

Table 4.1 shows NQR spectroscopy results for six NV centers located within the same diamond

sample (Supplementary Fig. 3). Interestingly, the values of P and AZ show a variance one order of

magnitude larger than the measurement uncertainty. In particular, NV A exhibits values for P and

AZ that differ by several kHz from the other NVs in this sample. NV A is also the only NV under

a diamond solid immersion lens (SIL). These milled structures are used to minimize optical losses

caused by total internal reflection and spherical aberration (See Figure 4.1a) [162, 163]. Yet, they

are recognized to influence the local strain field at the NV centers [164], consequently affecting the

NV Hamiltonian[165, 166].

NV D (MHz) E (MHz) AZ (kHz) P (kHz) β

A 2859.20(2) 8.33(4) 2168.1(1) 4934.9(1) 0.0016(2)

B 2870.47(2) 7.51(4) 2164.7(1) 4939.5(1) 0.0039(3)

C 2870.39(2) 7.63(4) 2163.5(5) 4939.4(2) 0.0095(4)

D 2870.37(1) 7.58(3) 2165.0(3) 4939.2(1) 0.0175(6)

E 2872.20(3) 7.58(4) 2162.9(4) 4936.9(2) 0.0205(4)

F 2870.41(2) 7.04(3) 2162.9(4) 4940.7(2) 0.0082(4)

Table 4.1: Electronic ZFS, hyperfine, and 14N quadrupolar parameters for each NV studied.
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Figure 4.2: Forbidden transitions (a) Evolution of the nuclear spin in the |mI = ±1⟩ manifold

when the electronic spin is in the state |ms = 0⟩ (blue) and |ms = −1⟩ (red) for a tuned DD sequence

with N = 12. (b) DD spectroscopy data for NV A (blue points with dashed line) and simulation

(solid orange curve) for N = 32. (c) The measured electron spin projection (blue markers) as a

function of N for fixed τ = 1.372µs (black marker in (b)) agrees with simulations (solid orange

curve). (d) DD spectroscopy data as a function of τ and N , which is fit using simulations (e) to

determine the value of α. Error bars in (d) are comparable to those in (b) and (c). (f) Detection limit

for α as a function of β for tuned DD sequences with different N ; the detection limit is the situation

where the signal-to-noise ratio exceeds 1. The noise floor is assumed to be constant at P (|0⟩) = 0.2.

The shaded area represents the detection threshold for the sequence applied experimentally. The

star marks the value for NV A.
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4.3. Forbidden quadrupolar transitions

Although the αi term in the 14N quadrupolar Hamiltonian vanishes for the ideal case of C3v sym-

metry, local perturbations such as strain and electric fields can distort the electronic wavefunctions,

leading to nonzero transverse electric-field gradients at the 14N position. When α is nonzero, the sec-

ond term in Eq. (4.5) directly couples the |mI = −1⟩ and |mI = +1⟩ nuclear states, causing nuclear

transitions to occur that are typically symmetry forbidden. Figure 4.2a illustrates these dynamics

for a suitably tuned DD sequence, whereby the nuclear spin evolves in the |mI = +1⟩ manifold ac-

cording to slightly different rotation axes depending on the electronic spin state; after many pulses,

the nuclear spin evolves into orthogonal spin states. The resulting entanglement between electronic

and nuclear spins manifests as a reduced signal amplitude for these carefully tuned pulse sequences.

DD spectroscopy of NV A (Fig. 4.2b) reveals the presence of these forbidden transitions as a series

of sharp, periodic resonances with a spacing given by

τk ≈ (2k + 1)π

2(AZ − 2ωN )
, (4.8)

where ωN = γNB. The Supplementary material VI includes a derivation of this expression.

In analogy to the typical phenomena of DD resonances (as in Fig. 4.1c), whereby A⊥ induces Sz-

dependent rotations between states with ∆mI = 1, here the nonzero α term induces Sz-dependent

transitions between |mI = ±1⟩ states. When α is small, many pulses are needed in order to accu-

mulate a measurable rotation angle. Figure 4.2c shows the evolution of the DD signal as a function

of N ; the contrast is reduced by approximately 1
3 due to the thermal occupation probability of the

uncoupled |mI = 0⟩ state. By varying both τ and N (Fig. 4.2f) around a particular resonance,

we map out the full dynamics of these forbidden quadrupolar resonances. A fit using numerical

simulations (Fig. 4.2f) yields a best-fit value of α = 2π× 2.429(12) kHz. The ratio α/P = 5× 10−4

illustrates how a tiny Hamiltonian parameter can have a substantial impact on nuclear dynamics

and be measured with high precision using DD spectroscopy.
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The sensitivity of the DD-based measurement is limited by intrinsic decoherence mechanisms (cap-

tured by T2) and by pulse errors [167]. For the sequences we consider, the total experimental

sequence times are much shorter than the intrinsic decoherence time (typically T2 ≈ 1ms at room

temperature), and the contrast decay is dominated by pulse errors, which we model using an expo-

nential envelope, e−βN . This envelope constrains the practical detection limit of α, shown in Figure

4.2b as a set of curves for different N as a function of β.

Of the six NV centers we studied, we only observed forbidden transitions for NV A. We propose two

reasons for this observation. First, NV A may experience larger-than-average symmetry breaking

from transverse strain or electric fields due to its location at the center of a milled SIL, and hence

a larger value of α. This is supported by measurements of the electronic ZFS D and E (Table 4.1)

are significantly different than for other NV centers in the sample. Moreover, NV A features the

smallest β of the sample and, subsequently, the lowest detection limit. Figure 4.2f shows the β

values for the other NV centers along with a shaded region corresponding to the N < 64 limit we

experimentally investigated; we expect that α for these NV centers is outside the detection region.

4.4. Nuclear initialization and coherent evolution

In addition to their use in sensing, DD sequences can be used to achieve precise control over

individual spin states [146, 148, 147]. Combinations of conditional and non-conditional gates can be

used to construct protocols for nuclear-spin initialization, unitary control, and entanglement with

the electron spin [147]. Figure 4.3a shows a sequence used to probe 14N spin initialization. Here, two

DD sequences functioning as CNOT gates transfer the population from the electron to the nuclear

spin states, and a subsequent electron-spin free-precession sequence probes the resulting nuclear

population. The electron precession exhibits three oscillation frequencies associated with the 14N

spin states, resolved by the AZ hyperfine coupling (Fig. 4.3b). The relative amplitudes of these

three oscillations, extracted from the power spectrum (Fig. 4.3b) reflect the nuclear spin occupation

probabilities. In this case, the DD initialization sequence applied to a forbidden transition of NV
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Figure 4.3: Initialization and Coherent Evolution (a) Experimental sequence used to probe

initialization of the 14N nuclear spin. (b) Power spectra of the free-precession data acquired without

(orange) and with (blue) a DD-based initialization sequence. (c) |mI = +1⟩ (blue markers) and

|mI = −1⟩ (orange markers) populations fitted from Ramsey data while varying the amount of

green time used to reinitialize the electron state. Exponential fits (dotted lines) show the population

difference decaying to the steady state values (solid horizontal lines). (d) Pulse sequence used to

measure the free induction decay of the 14N nuclear spin. The nuclear tomography sequence used is

described in the Supplementary Material. (e,f) Oscillations of the X (blue markers) and Y (orange

markers) projection of the 14N nuclear spin within the |mI = +1⟩ / |mI = −1⟩ manifold during free

evolution while the electron spin is in the (e) |mS = 0⟩ and (f) |mS = −1⟩ state.
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A transfers population from the |mI = −1⟩ state directly to |mI = +1⟩, further confirming the

physical interpretation of these resonances. More information about the initialization sequences

and free-induction measurements is available in the Supplementary Material.

The data in Fig 4.3b show that the 14N nuclear spin is partially polarized even without the 14N

initialization sequence. This is due to the off-axis hyperfine interaction in the optically excited

state [168]. By sweeping the duration of green illumination used to reset the electron spin, the

non-equilibrium nuclear population lasts for several microseconds (Figure 4.3c) before returning

to the steady state values, consistent with other studies on the 14N nuclear spin population [169].

Nuclear tomography on the 14N using the electronic spin confirms the effectiveness of the ini-

tialization sequence (Figure 4.3d). Oscillations in the 14N nuclear spin projection within the

|mI = +1⟩ / |mI = −1⟩ manifold during free evolution, observable while the electron spin is in

the|mS = 0⟩ and |mS = −1⟩ states, are evident in Figures 4.3e and 4.3f.

4.5. Comparisons of NQR and ZFS parameters

Figure 4.4 shows the measured values for the 14N quadrupolar splitting P and hyperfine coupling Az

plotted against the electronic ZFS parameters D and E for each NV center studied. The measure-

ments are clearly correlated, confirming that the nuclear quadrupolar Hamiltonian is influenced by

local strain and electric fields that distort the chemical bonds. As discussed earlier, NV A exhibits

ZFS parameters that are significantly shifted from the mean, consistent with a large local strain

or electric field. NV A is also the only center for which we observed a nonzero α parameters in

the 14N quadrupolar Hamiltonian. Using Equation 4.4, we obtain Vzz = 1.359(7) × 1022 V/m2,

and the fitted value of α for NV A gives a normalized transverse electric field gradient value of

VXX−VY Y
VZZ

= 0.0181(3).

4.6. Conclusion

This study introduced a method to measure the quadropolar Hamiltonian of an individual nu-

cleus using a single electronic spin as a sensor. The method enabled the observation of previously
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unidentified terms in the 14N Hamiltonian for NV centers, and elucidated correlations between the

electronic and nuclear Hailtonian parameters due to distortions of the defect’s structure. Compared

to existing techniques, this approach offers numerous advantages. Due to the frequency selectiv-

ity of DD spectroscopy, each nucleus is uniquely resolved by its hyperfine coupling to the electron

sensor. The measurement is also highly local; its sensitivity decreases rapidly with distance since

the hyperfine coupling scales as ∼ 1/d3, where d is the sensor-target separation; see the supporting

information for further details on sensitivity limits. Recent advances in creating and stabilizing

shallow NV centers [170, 171], combined with this approach, can potentially allow nanoscale NQR

sensors capable of probing individual nuclei at the single-molecule level. This method can also be

used to probe nuclei associated with surface groups, or to fingerprint defects inside the bulk. Func-

tionalized nanodiamonds containing NV centers can be suspended in liquid solutions and probed in

biochemical environments for in situ and in vivo chemical sensing applications [172, 173, 174].

One of the significant advantages of the NV center is its surrounding 13C ensemble, which can

function as a quantum register [147, 175, 176] and enhance sensing capacity [177]. This approach

preserves the ability to utilize such techniques. Since the hyperfine and quadrupolar parameters are

much stronger than the Zeeman splitting under our experimental conditions, the resonance positions

remain stable over a wide range of magnetic field values. Hence, the magnetic field can be tuned

for the convenience of the sample/system under study.

The accurate measurement of the asymmetry of the quadrupolar moment is becoming increasingly

crucial for precise control and manipulation of quantum systems [178, 179, 180]. Quadrupolar

asymmetry plays a role, for example, in semiconductor quantum dots [181] where it is the source

of decoherence, and in nuclear spin squeezing [182] where it can be used for control. The ability

to detect even the small magnitude of the asymmetry in systems where it is expected to be zero

represents a significant advancement.

Similar to other pulsed quantum spectroscopy techniques, the sensitivity of this NQR technique is
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limited by T2 and pulse errors. Pulse errors can be minimized by implementing more sophisticated

control schemes [183, 184]. Although T2 at room temperature is already close to the T1 limit,

it is possible to adapt NMR sensing protocols that surpass the T2 limit for use with NQR [185].

Additional techniques such as optimizing NV depth [186], improving sample preparation [187], and

employing machine learning to compensate for noise [188] will further boost the sensitivity.

4.7. Methods

The experimental sample and optical setup are as described in [189]. NV A is at the focus of a

Solid Immersion Lens (SIL) surrounded by a circular antenna used for microwave control. Other

NVs studied were within the antenna’s range but not within the SIL’s focus, leading to reduced

optical readout contrast. Magnetic fields were supplied by a permanent magnet and were measured

and aligned using the |mS = 0⟩ to |mS = ±1⟩ ESR transitions of the electronic spin. Magnetic

fields for each experiment are listed in the Supplementary Info. For initializing the spin states, long

green laser pulses (20µs) are used to reset the system, while shorter (100 ns) laser pulses are used

to reinitialize only the electron spin.

The experiment timing was controlled by a pair of Arbitrary Waveform Generators (AWGs). One

(AWG520 Tektronix) was triggered to start the experiment and controlled the optical excitations and

collection paths, including the AOM used to turn on the green (532nm) laser used for readout and

initialization, and the data acquisition system (National Instruments, PCIe-6323). The AWG520

was also used to trigger another AWG (AWG7102 Tektronix) which was used to control the IQ

modulation of a benchtop signal generator (SG384, Stanford Research Systems), which was fed

into a high bandwidth mixer (ZX05-63LH+, Mini-Circuits) to allow fast pulses and a high-isolation

switch (ZASWA-2-50DR, Mini-Circuits, allowing ) to prevent on-resonance leakage from decohering

the spin, both of which are also controlled by the AWG7102. Interpolated pulse spacings are

used to increase the resolution beyond the hardware limitations [1]. The output was fed through

a USB-controlled microwave attenuator (Rudat 6000-60, Mini-Circuits) and broadband amplifier
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Figure 4.5: (a) Pulsed ESR and (b) Ramsey data (blue points) from NV A taken with an on-axis

field (BZ > 0). Fits (solid orange lines) are consistent with a model containing only the nitrogen-14

nuclear spin coupling, with no other strongly coupled spins detected.

(ZHL-16W-43-S+, Mini-Circuits) before being delivered into the sample through a custom SMA-

connected PCB, which is, in turn, wire-bonded to the antenna traces.

4.8. Appendix

4.8.1. ESR and Ramsey

With natural isotopic abundance, we expect around 1.1% of the carbon nuclei in the diamond lattice

to be carbon-13. In bulk electronics grade samples, this means we expect a "typical" NV center to

have a few carbon-13 nuclei coupled in the 2π × 10−100 kHz range, as well as the NV’s intrinsic

nitrogen-14 nucleus with ≈ 2π × 2.17MHz coupling. It is possible to have more strongly coupled

carbon-13 nuclei if one is located within the first few coordination shells around the NV center, which

causes both the dipolar and contact couplings to increase. Two simple methods for measuring strong

nuclear couplings are electron spin resonance (ESR) and Ramsey type experiments. These related

experiments use either a weak, detuned microwave pulse or measure the rotation of a coherent

electron superposition state to infer the energy levels of the electron spin. Since these are shifted

by the coupling to nuclear spin, different frequencies will be observed. Both of these are limited in

resolution by the coherence time of the electron, either under driving (TRabi
2 ) or free decay (T ∗

2 ),

which are expected to be similar.
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4.5 shows ESR and Ramsey data on NV A with an on axis magnetic field. In 4.5(a), ESR is

taken with 1µs pulse widths at an amplitude which gives an approximate π rotation, leading to

an ≈ 1MHz resolution. While this does not saturate the coherence limit, this avoids broadening

of the peaks due to slow spectral drift in the system. In 4.5, the phase of the final π
2 pulse is

swept at 5MHz to aid in measuring the component oscillation frequencies of the beating signal.

Data was taken past T ∗
2 ≈ 2.4(1)µs and showed no revivals. Both of these datasets are consistent

with a model including only the nitrogen-14 nuclear spin and no other strongly coupled nuclei

(|AZ | ⪆ 2π
T ∗
2

≈ 2π × 300 kHz, where |AZ | is the strength of the on-axis component of the elecro-

nuclear hyperfine coupling). Datasets for the other NVs studied were similar, either showing no

strong couplings or only a few couplings near the T ∗
2 limit for those with longer coherence times.

None showed Carbon-13 couplings stronger than 200 kHz.

4.8.2. Dynamical Decoupling Spectrum

Dynamical decoupling extends the coherence time of the electron spin with refocusing pulses. A

single refocusing pulse is enough to extend the coherence time to several hundred µs, greatly increas-

ing the resolution with which nuclear spin dynamics can be detected in spectroscopy. Furthermore,

at higher pulse numbers and longer inter-pulse spacings, resonances from individual nuclei become

sharper and separate spectrally, allowing resonances from weakly coupled nuclei to be observed. In

the case of spin-12 nuclei such as 13C, the approximate location of individual nuclear spin resonances

is given by

τk =
(2k − 1)π

2ωL +AZ
(4.9)

where τk is the spacing between pulses at the k-th resonance, ωL is the nuclear Larmor frequency,

and AZ is the parallel component of the hyperfine coupling for that individual nuclei. Spectroscopy

from sweeping τ is then expected to reveal resonances arising from several more weakly coupled

C-13 nuclei (with 2π
T ∗
2
⪆ |AZ | ⪆ 2π

T2
≈ 2π×10 kHz) for an NV in natural isotopic abundance diamond,

such as those in the sample under study.
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Figure 4.6: Dynamical decoupling data (blue points w/ dashed line) taken on NV A with a

purely on-axis field (BX ≈ 0) shows resonances associated with multiple individual carbon-nuclei

(colored arrows), as well as a resonance series associated with a higher energy spin (black arrows).

Simulation (solid yellow line) shows this is consistent with an additional term in the nitrogen-14

nuclear quadrupolar Hamiltonian, as well the known carbon-13 nuclei. Data is taken with N = 32

pulses at a magnetic field of 264Gauss aligned within ≈ 1◦ of the NV axis. (Inset) High resolution

data (markers) taken for various N around τ = 1.372 us fitted using our in-house simulator (best-fit

simulation represented by dashed lines). Based on this we determine α = 2π × 2.43(2) kHz for the

Nitrogen-14 nuclear spin.

98



Indeed, we observe resonances associated with at least four C-13 nuclei within the dynamical de-

coupling spectroscopy data shown in 4.6, indicated by colored arrows. Additional data was taken at

each resonance and fitted in simulation to obtain the hyperfine coupling for each carbon-13. In ad-

dition, broad resonances saturating to P (|0⟩) = 0.5 are caused by the electron spin entangling with

a large number of nuclei near the carbon-13 Larmor frequency. Here, data is taken with a purely

on-axis magnetic field (BX ≈ 0), and therefore, resonances associated with the mI = 0 to mI = ±1

nitrogen nuclear spin transition are not expected to appear. However, the data also contain an

unexpected, higher-frequency resonance series in addition to the expected carbon-13 resonances.

The resonance series corresponds to a frequency of several MHz, and it is stable to the orientation

of the external DC magnetic field (up to at least ±3◦). Additional data was taken around one

of these resonances and fitted to obtain the α and A parameters for the nitrogen-14 nuclear spin

Hamiltonian in NV A as described in Fig. 2 of the main text. After fitting the four carbon-13

nuclear resonances and the nitrogen-14 nuclear parameters (including the P and A parameters) the

simulations (yellow line) agree well with the dynamical decoupling spectra everywhere except near

the carbon-13 Larmor frequency (which is expected as our exact simulations do not account for the

nuclear spin bath).

Other NVs studied in this work showed similar carbon-13 resonances but did not display the high-

frequency resonances associated with the nitrogen nuclear spin.

4.8.3. Fitting additional Hamiltonian parameters for Nitrogen-14 nuclei

As described in the main text, data was taken for each NV with a slightly off-axis field (|BX | > 0),

allowing mI = 0 to mI = ±1 nitrogen nuclear spin transitions to occur due to spin mixing. To

fit the value of both the hyperfine and quadrupolar parameters of the Nitrogen nuclear spins in

the NVs studied, the number of Dynamical Decoupling pulses was swept while looking at a narrow

region around a high order resonances for each of the two transitions. The resonances were chosen

to avoid features related to Carbon-13 nuclei coupled to each NV. The data for both resonances was
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Figure 4.7: Dynamical decoupling data for each NV studied taken with an off-axis field |BX | > 0,

showing resonances associated with |mI = 0⟩ to |mI = ±1⟩ transitions of the Nitrogen-14 nuclear

spin as the number of dynamical decoupling pulses is swept. Pulse spacings below the hardware

limit (≈ 1 ns) are achieved using interpolated sequences [1]
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Figure 4.8: Sequences used to initialize and read out the nuclear spin state using the electron spin.

Dashed gates in the tomography sequence are included or removed depending on the desired nuclear

measurement axis.

simultaneously fitted to a simulation based on the Hamiltonian given in the main text for each NV,

with the hyperfine and quadrupolar parameters allowed to vary. Additional variation parameters

were added to account for the loss of coherence due to pulse imperfections and dephasing of the NV

electron spin during the DD sequence. Data for each NV listed in the main text is shown in figure

4.7.

4.8.4. Nuclear Spin Initialization and Tomography Sequences

Based on our fitted simulations, we find that N = 24pulses at a spacing of τ = 1.372 us gives an

approximate π
2 rotation between the |mI = −1⟩ and |mI = +1⟩ states of the Nitrogen-14 nuclear

spin conditional on the state of the electron spin within the |mS = 0⟩ / |mS = −1⟩ manifold (see

Fig1(b) of main text). Furthermore, simulations show that a high-fidelity unconditional Z rotation

on the |mI = ±1⟩ manifold of the Nitrogen-14 spin can be implemented using a single pulse on the

|mS = 0⟩ / |mS = −1⟩ electron spin manifold, due to the small magnitude of the off-axis term in the
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nuclear quadrupolar Hamiltonian.

Using these two-qubit gates, we implement nuclear initialization and tomography sequences adapted

from [147], as depicted in Fig. 4.8.

4.8.5. Initialized Ramsey

As described in the main text, Ramsey data was taken after initializing the nitrogen nuclear spin

using the above sequence to measure the population in each nuclear spin states. The amount of green

time used to re-initialize the electron spin is swept to ensure we are not observing a steady-state

polarization. Raw Ramsey data for each electron re-initialization length is shown in Fig. 4.9. Data

for the steady state Ramsey is repeated from Fig. 4.5 As expected, the nuclear spin populations

decay back to the steady state value due to off-axis hyperfine coupling in the excited electronic

state, with a characteristic decay time of several µs (similar to other published work [169]).

4.8.6. Full Nitrogen Initialization

Simulations

Simulations throughout the manuscript were performed using exact simulation of the described

Hamiltonians, along with the well-known Hamiltonian for the electronic spin of the negatively

charged NV center at room temperature. Only spin degrees of freedom are considered, while optical

and charge dynamics are assumed to be normalized away by readout calibrations which are inter-

leaved with the experiments. Decoherence dynamics are modeled as a uniform decay of this signal,

using the form described in Equation (8) of the main text. Hyperfine and quadrupolar parameters

are extracted from data by allowing these parameters to vary in the simulations and fitting the

simulation results to the data using general optimization methods.

In Figure 4, simulations are performed without (a) and with (b) Gaussian noise, which is repre-

sentative of the dominant shot noise in our experiments. In Figure 4(a), the maximum contrast is

obtained by sweeping the number of pulses and measuring the largest contrast obtained, where con-
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Figure 4.9: Initialized Ramsey experiment for each of the electron re-initialization times, as depicted

in Fig3(a) of the main text. Blue markers are data and yellow lines are oscillatory fits used to extract

the occupation parameters of the Nitrogen-14 spin. (Insets) Power spectra for each of the Ramsey

experiments - the polarization of the Nitrogen-14 spin is apparent from the unequal height of the

frequency peaks.
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trast is defined as the depth of the resonance peak divided by the total readout contrast (normalized

to be 1). In Figure 4(b), simulations were performed and random noise was added in, using a noise

amount characteristic of our experiments. For each value of β, the α parameter in the simulation

was reduced until the uncertainty in the fit dropped below the current signal.

Resonant Lines for α

The Hamiltonian of the system is given by:

H = HZE +HZN +Hhf +Hquad

Hquad := P (I2Z) + α(I2+ + I2−))

Hhf := AZSZIZ +A⊥SZIX

HZE := ΩESZ

HZN := ΩNIZ

where HZE and HZN represent the Zeeman terms for the electronic and nitrogen spins, respectively,

Hquad denotes the quadrupolar term, andHhf refers to the hyperfine coupling between the two spins.

Under the assumption that the perpendicular hyperfine coupling is negligible, i.e., A⊥ ≈ 0, we

can perform a unitary transformation U(t) to eliminate all the fast-rotating components from the

system. The transformation is given by U(t) = e−i∆EtSz⊗e−i∆N tIz . The transformation is described

by U(t) = e−i∆EtSz ⊗e−i∆N tIz . Under this transformation, the terms HZE , HZN , and Hhf,Z remain

unchanged. Contrary to the isotropic components of the Hamiltonian, the quadrupolar coupling

does not commute with the other terms. As a result, it is essential to calculate its contribution to

the Hamiltonian explicitly. Using the Baker–Campbell–Hausdorff formula, we get that

eiλIzI2+e
−iλIz = e2iλI2+

eiλIzI2−e
−iλIz = e−2iλI2−
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Thus, the Hamiltonian expressed in the rotating frame is given by:

H ′ = AZSZIZ + P (I2Z) + α(e2i∆N I2+ + e−2i∆N I2−))

where we set ∆E = ΩE and ∆N = ΩN . The term that is dependent on the electronic spin state is

solely given by AZSZIZ = AZ [|1⟩ ⟨1| − |−1⟩ ⟨−1|]⊗ IZ which allows us to write the Hamiltonian as

H ′ = |−1⟩ ⟨−1| ⊗H−1 + |0⟩ ⟨0| ⊗H0 + |1⟩ ⟨1| ⊗H1

where H−1 = −AzIz +Hind, H0 = Hind, and H1 = AzIz +Hind. We have consolidated the time-

independent portion of the Hamiltonian into Hind, which includes the quadrupolar term and is

expressed as:

Hind = P (I2Z) + α(e2i∆N I2+ + e−2i∆N I2−))

The evolution operator V = exp{−iHt} takes the same form

V = |−1⟩ ⟨−1| ⊗ V−1 + |0⟩ ⟨0| ⊗ V0 + |1⟩ ⟨1| ⊗ V1,

where Vi exclusively influences the nitrogen subspace with spin state i and can be formulated as a

rotation around an axis n⃗i of angle ϕi such that Vi = exp
[
−iϕi(I⃗ · n⃗i)

]
. For a spin 1 system, the

trace is computed as

Tr
[
exp

[
−iϕi(I⃗ · n⃗)

]]
= 1 + 2 cosϕi.

Our goal is to isolate n⃗i · n⃗j to allow us to find the resonance conditions. To do so, we can use the
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fact that Tr
[
exp

[
−iϕ(I⃗ · n⃗)

]
Ij

]
= −2i sin(ϕ)nj to generate this expression

n⃗−1 · n⃗0 = 1 +
1

4

∑
j∈{x,y,z}

Tr [(V−1 − V0)Ij)]Tr [(V−1Ij)]

1−
(

Tr[V0]−1
2

)2
Under a π-pulse, using the |−1⟩ , |0⟩ as an example the electronic spin evolves as follows: |−1⟩ → |0⟩,

|+1⟩ → |+1⟩, and |0⟩ → |−1⟩, with the pulse sequence specified by:

τ 2τ τ

π π

This results in the following evolution operators:

V0 = exp [−iτHind] exp [−2iτH+1] exp [−iτHind]

V−1 = exp [−4iτH−1]

V+1 = exp [−iτH+1] exp [−2iτHind] exp [−iτH+1].

Our objective is to determine the difference in rotation between the +1 and −1 states, which can

be computed as n⃗−1 · n⃗+1 and the angle of rotation ϕ. It is important to note that our aim is not to

maximize the angle ϕ but rather to find the condition that maximizes the difference in the evolution

of the states |+1⟩ ⟨+1| and |−1⟩ ⟨−1|. Our goal is, therefore, to minimize the dot product between

those two angles:

τres = argminτ

1 +
1

4

∑
j∈{x,y,z}

Tr [(V+1 − V−1)Ij)]Tr [(V+1Ij)]

1−
(

Tr[V−1]−1
2

)2


Minimizing this equation is laborious, yet several small parameters are present in the Hamiltonian.

The hyperfine coupling significantly outweighs the Zeeman term (ΩN
AZ

≈ 0.04), allowing for a first-

order expansion of the ratio. Similarly, for α
ΩN

≈ 0.03, retaining the term at first order is appropriate,
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while the term α
AZ

can be safely omitted, as it is approximately 0.001.
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CHAPTER 5

A GRAPH-BASED REPRESENTATION OF QUANTUM DYNAMICS AND CONTROL

In quantum mechanics, the evolution operator is indispensable for elucidating the temporal dynamics

of quantum states. Its precise computation is paramount, particularly in quantum computing, where

it orchestrates qubit manipulations through unitary transformations integral to algorithm execution.

Such rigorous control of the evolution operator advances the theoretical underpinnings essential for

pioneering developments in quantum technologies [6]. In many quantum applications, the goal is to

determine the evolution of a state or a density matrix, achieved through the time evolution operator

U(t, t0) which is given by

U(t, t0) = T
{
exp

[
−i
∫ t

t0

H(τ)dτ

]}
(5.1)

where T is the time-ordering operator. This notation involving the time-ordering operator is largely

syntactic sugar for an underlying complex nested integral:

U(t, t0) = I +
∞∑
n=1

(−i)n
∫ t

t0

dt1

∫ t1

t0

dt2· · ·
∫ tn−1

t0

. . .

H(t1)H(t2) . . . H(tn). (5.2)

U(t, t0) generally depends on some parameters x⃗, which parameterize a time-dependent control. In

numerous tasks, x⃗ must be optimized to minimize a loss function L(U), which may, for instance,

quantify the deviation from a desired gate and the control cost. Thus, it’s crucial to effortlessly

calculate the gradient ∂L(U)
∂x⃗ across a broad spectrum of loss functions L and Hamiltonians.

Quantum computing and sensing typically operate within a discrete state space, where states are

assigned qubit values. This discrete nature allows for precise control and manipulation, essential

for quantum algorithms and high-precision measurements. Significant efforts have been directed

toward spin-based systems to enhance qubit fidelity and operational stability. This led to the devel-
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opment of multiple approaches for simulating and controlling their evolution. One such approach

is diagrammatic, representing the evolution as a sum of diagrams that depict interactions between

spins.

Diagrammatic approaches, such as the pair-correlation approximation [190, 191, 192], the Linked

Cluster Expansion (LCE) [193], the Cluster Correlation Expansion (CCE) [194, 195, 196] and the

ring diagram methods [197, 198], are widely employed in the study of spin decoherence in quantum

systems [199]. Those methods and their derivatives have been used to study the decoherence of

solid-state qubits and organic radicals across various platforms [200, 201, 202, 203, 204]. They

offer a robust perturbation expansion that allows summing over groups of Feynman diagrams in

increasingly advanced ways, enabling detailed study of the effects of each group, enhancing both

performance and interpretability [193].

Inspired by these approaches, we propose a method that is also based on diagrams but applicable to

any finite basis Hamiltonian. The method preserves the interpretability of previous diagrammatic

techniques and allows treatment to be exact or perturbative. Additionally, our approach is designed

to support gradient descent and integrate seamlessly into current machine learning frameworks.

5.1. Hamiltonian as a Graph

A Hamiltonian H can be conceptualized as a graph, a notion that should not seem too surprising

[205, 206, 8]. In this graph, the vertices v ∈ V correspond to the matrix’s basis, one vertex vi for

each row or column. The vertices vi and vj are connected by an edge ei,j if and only if Hij ̸= 0

and this edge is given the weight w(ei,j) = Hij . Non-zero diagonal elements imply the presence

of self-loops in the graph. Figure 5.1 shows an example of a network for a simple Hamiltonian.

Although this isomorphic transformation does not confer new information, it facilitates intuitive

consideration of paths within state space.

Equations 5.1 and 5.2 function similarly to an exponential operator, emphasizing the product of
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the Hamiltonian matrix within an iterated integral. In the time-independent case, the evolution

operator is simply given by

U(t, t0) ≡ exp {−iH∆t} =
∞∑
k=0

(−i∆t)k

k!
Hk (5.3)

Viewing the Hamiltonian as a graph, the matrix power, under the matrix product, (Hn)ij equals

the weighted sum of all paths from node j to i of length k. Thus, U(t, t0) represents a summation

across all paths, weighted by their lengths and the transitions involved. The straightforward path

interpretation in the time-independent scenario naturally suggests representing the time-dependent

case of U(t, t0)ij as a summation over all paths as well. However, given the time-ordered exponential

and time-dependent weights, attention must be paid to the product of weights, which can be done

using Volterra composition.

5.2. Evolution Operator Representation

In this section, we detail the process, utilizing Volterra composition alongside the conventional

breakdown of a graph into its elemental cycles and paths to compute the time-ordered exponential

of 5.2. Let ⋆ be the Volterra composition of the first kind such that for t1 > t0 we have

(f ⋆ g)(t1, t0) =

∫ t1

t0

f(t1, τ)g(τ, t0)dτ (5.4)

and let 1⋆ be the identity of this composition. For the n repeated composition of f with itself we

write f⋆n = f ⋆· · ·⋆f (n times). In a similar fashion, we write [1⋆ − f ]⋆−1 for
∑∞

n=0 f
⋆n which we will

call the resolvent of f . For any function of the form f(t1, t2)Θ(t1− t2), this series is unconditionally

convergent everywhere except at the singularities of the function [207].

Then, following [208, 209, 210, 211], U(t, t0) can be written as
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Figure 5.1: Graphical Hamiltonian (A) A Hamiltonian can be interpreted as a weighted graph.

(B) Example of the computation tree for the element U11 corresponding to the graph shown in (A).

(C) Example of the computation graph for U11

.
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Uji(t, t0) =
∑

p∈Πi,j

(−i)|p|−1

∫ t

t0

(
G{i,v1,...,vl−1},j ⋆ Hjvl−1

⋆G{i},v1 ⋆ Hv1,i ⋆ G∅,i
)
(t, τ)dτ (5.5)

where Πi,j denotes the set of all simple paths from node i to node j, each path p being a sequence

of vertices (i, v1, . . . , vl−1, j) without repeated vertices. GV,i represents Green’s functions for simple

cycles, which start and end at node i and traverse only through vertices in subset V . Like simple

paths, these cycles are characterized by visiting each vertex no more than once. The following

section will discuss green functions; however, we initially exclude them from Equation 5.5. This

omission aims to elucidate the connection to the time-independent scenario described in Equation

5.3. In this case, the equation can then be approximated as

Uji(t, t0) ≈
∑

p∈Πi,j

(−i)|p|−1

∫ t

t0

(
Hjvl−1

⋆ · · · ⋆ Hv1,i) (t, τ)dτ (5.6)

This equation retains the concept of a summation over paths, now only on more straightforward

paths. The product of steps is incorporated using Volterra composition instead of the simple prod-

uct. However, as seen in the time-independent case, relying solely on simple paths is inadequate;

for instance, for the graph of Figure 5.1A, there is only one simple path in between node 1 and 3

when computing U31. Using Equation 5.6 to compute U31 would not take into account all the valid

paths. The path 1 → 2 → 1 → 2 → 3 exemplifies a valid path missed when considering only simple

paths. In this case, this path takes the form 1 → γ → 2 → 3 where γ is an element of Γ1, which

contains all simple cycles starting from node 1.
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Green functions are introduced to address those simple cycles and are added between all transitions

in Equation 5.5. However, caution is required to prevent double counting as the path 1 → 2 →

1 → 2 → 3 can be represented either as 1 → γ1 → 2 → 3 or 1 → 2 → γ2 → 3, where γ1 ∈ Γ1

and γ2 ∈ Γ2. To avoid double-counting, nodes that have been previously visited are excluded from

GV,i, justifying the use of a vertex subset V rather than the entire graph. Finally, it is important to

note that simple cycles can be composed recursively. A simple cycle from Γ2 can be disrupted by a

simple cycle from Γ3 if vertex 3 is visited at any point during the first cycle. The Green functions

need to add those loops recursively, thereby covering all possible paths. For more details on the

enumeration of paths, see [212].

The Green functions GV,i, defined recursively, describe simple cycles originating from vertex vi, using

only vertices within the subset V ⊆ G, such that

GV,i = [1⋆ −
∑

γ∈ΓG\V,i

(−i)|γ|−1G{i,v1,...,vl−2},vl−1
⋆

G{i},v1 ⋆ Hv1i

]⋆−1
, (5.7)

where ΓG\V,i is the set of cycle starting at node i on the graph G with the set of node V removed

and γ is a cycle of the form γ = (i, v1, · · · , vl−1). The recursion halts when vertex i in GV,i has no

neighboring vertices within V , at which point it is specified as

GV,i =


[1⋆ −Hii]

⋆−1 if Hii ̸= 0.

1⋆ otherwise.
(5.8)

The recursive process, therefore, terminates after a finite number of steps. Figure 5.1B shows an

example of such a process.

Reviewing a Green function with only a self-loop as its simple cycle, GV,i = [1⋆−Hii]
⋆−1, highlights
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the resolvent’s role. The resolvent allows for the iterative traversal of its simple cycles in every

possible sequence. Here, it aggregates the terms for circling the cycle once (Hii), twice (Hii ⋆ Hii),

and so on, ad infinitum. This can be easily seen by the fact that [1⋆ − f ]⋆−1 =
∑

k f
⋆k For example,

if two cycles, denoted as c1 and c2, are reachable, the resolvent [1⋆ − c1 − c2]
⋆−1 aggregate every

possible ways of navigating them. This ranges from not traversing any (1⋆) to traversing each one

independently c1 + c2, up to every permutation in any order (c1c2 + c2c1 + . . .).

This method, employing the Volterra composition, enables the computation of Uji in terms of all

paths p ∈ Πij from i to j. This is achieved through an enumeration process incorporating simple

paths with simple cycles incorporated between each step. When employing this method, one can

calculate partial U over a subset of paths Π′, which we write UΠ′ . This is achieved by substituting

Π with Π′ in Equation 5.5. We will leverage this feature to simplify computations and delve into

the underlying physics of a measurement process in Section 5.4.4.

5.3. Implementation

The presented representation is admittedly quite unwieldy to deal with. It is barely tractable

by hand for simple problems because of the complexity and the shear numbers of nested integral

[208]. Furthermore, approximating the resolvent as a series leads to convergence problems and is

extremely slow. Discretizing the Volterra composition and finding a tractable way to compute the

resolvent is necessary. Since our goal extends beyond merely computing U to include accessing its

derivatives with respect to controls and parameters in the Hamiltonian, we must track and compute

these derivatives. This can be efficiently achieved using contemporary deep learning frameworks

[213]. Even though the representation is finite regarding path and cycle expansion, it results in a

combinatorial explosion that must be managed.

5.3.1. Discretized Volterra Composition

Fortunately, the composition 5.4 is, in essence, a continuous analog to the matrix multiplication.

This analogy leads to a simple discretization scheme [214, 215, 207]. For a function f(t1, t2), which
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is not a distribution, where both t1 and t2 belong to an interval I, we create its discrete analog, a

matrix F, by discretizing the interval I into nt points {tl}nt
l=0 using a step size ∆t, as follows:

(F)ll′ := f(tl, tl′)Θ(tl − tl′). (5.9)

This approach enables us to express the discretized Volterra composition, utilizing the basic rect-

angular method for integral approximation, as follows:

(f ⋆ g)(tl, tl′) = lim
∆t→0

(FG)ll′∆t. (5.10)

It also leads to a simple expression for the resolvent

[1⋆ − f ]⋆−1 (tl, tl′) = lim
∆t→0

1

∆t
(I−∆tF)−1

ll′ . (5.11)

Thus, calculating the resolvent equates to determining a matrix inverse, with the precision of the

approximation enhanced by reducing the size of ∆t. We have outlined the discretization approach

for approximation via rectangular integration. However, this can and should be implemented using

higher-order methods such as the trapezoidal or Simpson’s rule for enhanced accuracy [207].

5.3.2. Computation Tree

First, the Hamiltonian is discretized also on the interval {ti}nt
i=0 such that

H(tl, x⃗) = H0 +

nH∑
k=1

fk(tl, x⃗)Hk, (5.12)

where the terms flk(x⃗) may denote control parameters or fields parameterized by a vector x⃗ ∈ Rnc ,

parameters within the Hamiltonian, or uncertainties associated with the Hamiltonian. The specific

details of flk(x⃗) are not crucial at this point; only knowing the nonzero transitions element in Hk and

H0 is important for building the graph. The computation tree, as described by Equation 5.5, can
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then be straightforwardly implemented. Initially, the non-zero terms of H(tl, x⃗) serve to construct

graph G, in which an edge between node i and j is established if there exists a pair (tl, x⃗) for which

H(tl, x⃗) ̸= 0. The computation graph of Uji, following equation 5.5, is built where the needed ΓG\V,i

are computed on demand until the graph is fully expanded.

At this stage, neither Hij nor G have been calculated. This computation occurs during a forward

pass when x⃗ is provided as input. The functional elements Hij are transformed in their discrete

matrix analog (Hij)ll′ such that

(Hij)ll′ = H0,ijLll′ +

nH∑
k=1

Hk,ij(Fk(x⃗))ll′ (5.13)

where L is a lower triangular matrix of 1 and (Fk(x⃗))ll′ = fk(tl, x⃗)Θ(tl− tl′). Equation 5.13 is input

into Equation 5.5 to calculate U . To allow for the gradient to flow from Uji to the vector x⃗, the

function fk(tl, x⃗) needs to be differentiable.

In this work, we achieve this by setting fk(tl, x⃗) = Bkx⃗ where Bk ∈ Rnt,nc is a matrix that represents

the basis used for representing the control. This study implemented linear, Lagrange, and Fourier

bases, but the framework is versatile enough to incorporate any other type, including integrating a

deep neural network. Unless otherwise stated, the results presented in this paper employ the linear

basis, wherein x⃗ represents the control values at a subset nc of the nt time points, with the Bk

performing linear interpolation between these points. If multiple independent control functions are

required, the control vectors are combined into x⃗, transforming Bk into a block diagonal matrix.

5.3.3. Taming the Exponential Complexity

The computation tree can also become unwieldy for even small systems (see, for example, Figure

5.1C). This problem can be mitigated using multiple strategies. The initial method, termed Length-

limited Path Computation, is self-explanatory. To mitigate the explosive complexity, we filter Πi,j by

removing simple paths exceeding a certain length, where the acceptable threshold varies depending
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on the system. Similarly, we limit the computation in the Green functions, which we termed

Recursion-limited cycle computation. In the case of Green’s functions, we cap the recursion depth

for computing GV,i at a threshold, beyond which they are treated as the identity matrix. Similarly,

this threshold is employed to restrict the length of cycles in Λi, mirroring the approach taken with

paths.

These two strategies are straightforward and generally perform well with conservative thresholds.

However, they are problem-dependent and do not consider the value of Hij , potentially rendering

a long path significant and a short path negligible. The impact of a path p ∈ Πi,j can be as-

sessed by approximating the norm of the term in the sum of Equation 5.5 which takes the form∥∥∥∫ t
t0
(G′ ⋆ H ′ · · · ⋆ G′′′) (t, τ)dτ

∥∥∥ or, at the very least, by establishing an upper bound. This task

presents challenges due to the nested inverses inherent within the G matrices. However, the norm

of the composition of paths can be used, which is ∥H ′ ⋆ · · ·H ′′′ ⋆ H ′′′′∥. It correlates strongly with

the path’s impact on U for low entanglement. Each path can be ranked according to this norm,

allowing for effective thresholding.

For large systems, space complexity becomes challenging due to the quadratic growth in storage

requirements for matrices and gradients (∼ n2t ), along with a linear increase in the count of such ma-

trices with respect to |V |, which typically scales as the square of the graph’s node count. As usual,

there’s a trade-off: store all data to save time or recompute data each time to conserve memory. In

our implementation, frequently reused matrices, notably the main G, are prioritized for caching. In

scenarios where system size prevents caching, all matrices are recalculated dynamically, including

the H. Furthermore, gradient checkpointing is implemented at each resolvent and Volterra com-

position, facilitating training through selective storage of intermediate activations and on-demand

recomputation. This strategy balances a higher computational cost against reduced memory usage

[216]. With this feature activated, the computational load nearly doubles due to minimal gradient

storage.
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5.4. Applications

This section highlights applications demonstrating the method’s strengths and weaknesses, inspired

by real-world challenges and showcasing the representation properties. We begin with a straight-

forward fluxonium example in Section 5.4.1 to demonstrate the method’s effectiveness and the au-

tomatic differentiation scheme’s capability to manage the typically loss functions. Next, in Section

5.4.2, we explore a spin chain example to highlight the method’s primary advantage and drawback:

the element-wise computation of U . This is illustrated through a state transfer example where the

loss function relies on only a few elements of U . In Section 5.4.3, we show a useful aspect of the

representation as two-dimensional functions, whereby the elements of U are calculated for any given

initial and final times. Finally, in Section 5.4.4, we delve into how examining a particular path

within U aids in crafting measurement strategies, focusing on the application of single-spin nuclear

quadrupolar resonance (NQR) involving nitrogen-vacancy (NV) centers in diamonds.

5.4.1. Fluxonium Qubit and Standard Loss Functions

In this section, we illustrate the method’s functionality using the extensively studied fluxonium qubit

as an example, highlighting its capacity to support all types of loss functions. Figure 2.3 illustrates

the examined fluxonium model, which presents the two energy levels in the well representing the

qubit alongside the overall architecture of a fluxonium qubit [217]. The Hamiltonian is given by

H = fq
σz
2

+ a(t)
σx
2

(5.14)

where fq is the fluxonium frequency at the frustration point, a(t) is the time dependent control and

σi is the ith Pauli matrix [218]. The qubit frequency, fq, is 13.89 MHz, and the amplitude, |a(t)|, is

constrained to ≤ 500mHz, delineating the range within which the energy levels and flux maintain

an approximately linear relationship. We aim to develop a Y/2 rotation gate subject to multiple

constraints. We aimed for control that minimizes depolarization, approximated as proportional to

the T1 of the fluxonium at a given driving frequency, as follows:
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Figure 5.2: A simple fluxonium example (A) Schematic representation of the system featuring

the two energy levels utilized for Qubit formation. (B) Paths on the Bloch sphere of the system’s

state implementing a Y/2 gate for a short 25 ns pulse (1) and a long 79 ns pulse (2). (C) Trace

distance (in red) and decoherence, D1 (in blue), plotted against varying pulse lengths for the op-

timized pulse. Markers highlight the Bloch spheres depicted in section (B). (D) Time trace of the

control signals a(t) over seven different control durations ranging from XX ns to XX ns, displayed

in a waterfalled format with alternating line types for readability.
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D1 =

∫ t

0
T−1
1 (a(t′))dt′ (5.15)

where the function T1 was obtained experimentally for a constant driving in [218]. To assess the

deviation between the final gate at tm, denoted Uji(tm, t0), and the intended target gate UX/2, we

utilize the trace distance, which is defined as

Tr(ρ, σ) =
1

2
Tr
[√

(ρ− σ)†(ρ− σ)

]
. (5.16)

For gradient computations, this is more conveniently calculated as 1
2

∑
|λi|, where λi are the eigen-

values of ρ − σ. The loss function is formulated as the sum of all individual losses, each weighted

by a linear coefficient to reflect the importance attributed to each specific loss.

The total time for the gate is taken as a decision variable. An optimal time exists; however, a gate

can be effectively optimized for the most sufficiently long duration. At this optimal duration, simple

bang-bang control results in exceptionally high fidelity [219]. However, we introduce additional

criteria for the pulse, making this control scheme sub-optimal but more realistic. The initial set of

criteria pertains to the pulse’s shape, while the second ensures stability amidst fluxonium frequency

drifts.

We penalize the L1 norm of the control L1
a =

∫ t
0 |a(t)|dt, the norm of the derivative L1

da =∫ t
0 |

∂
∂ta(t)|dt and of the second order derivative L1

d2a =
∫ t
0 |

∂2

∂t2
a(t)|dt. These penalties help lower

the heating, ensure stability, and help satisfy the experimental bandwidth constraints on the con-

trol a(t). Additionally, we impose a penalty for frequency drift Ldrift, such that minor frequency

variations still result in effective gate performance. To achieve this, we assess the variation in trace

distance due to a change in fq by employing a straightforward partial derivative, such that

Ldrift =

∣∣∣∣∂Tr(ρ, σ)
∂fq

∣∣∣∣ . (5.17)
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Using all those losses, Figure 5.2BCD illustrates the result of the optimization process. Figure

5.2B displays the trajectories for two distinct pulse durations: one near the optimal gate time (1)

and the other significantly longer (2). Figure 5.2C reveals the optimal gate time close to the first

arrow, indicating a period when the qubit requires minimal driving, as evidenced by its lowest

decoherence. The pulses obtained in Figure 5.2D are consistent with those reported in [218]. The

common mechanism involves splitting the pulse into two halves: the first with positive driving and

the second with negative driving, featuring a rapid transition at the center. The pulses exhibit signs

of driving level quantization, stemming from local minima in T−1
1 (a). This occurs because certain

driving values slightly outperform those lower or higher in decoherence.

5.4.2. State transfer in Spin Chain

In this section, we demonstrate a key characteristic of the approach. The expansion 5.5 computes

individual elements of the operator U sequentially, rather than the entire operator simultaneously.

Depending on the situation, this can either present challenges or offer benefits. It is advantageous

for scenarios involving state transfer, where the loss associated with transferring from |i⟩ to |j⟩ can

be expressed as

|| ⟨j| U(tm, t0) |i⟩ || = ||Uji(tm, t0)|| (5.18)

only requiring the computation of Uji.

To illustrate this, we examine state transfer within a spin chain characterized by the Hamiltonian

H =

ns∑
i=0

ΩiS
z
i +

ns−1∑
i=0

S⃗i ·Ai · ⃗Si+1 + a(t)Sx
1 , (5.19)

where the initial term represents the Zeeman effect for each spin, while the second term addresses

the interactions between spins (See Figure 5.3A). In this scenario, only nearest-neighbor interactions

are considered. The final term accounts for the control applied exclusively to the first spin in the

chain. The objective is to modify the last spin in the chain from |0 . . . 0⟩ to |0 . . . 1⟩ by solely
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Figure 5.3: Partial computation of U illustrated: state transfer in a spin chain (A) Graph

of the Hamiltonian used in the example (B) Unfaithful depiction of the chain’s three-spin state

using three Bloch spheres. (C) Expectation values for X (blue), Y (orange), and Z (green) across

the three spins. (D) (Left) Control exerted on the first spin results in the rotation of the third spin.

(Right) Time evolution of the transfer matrix element’s magnitude.
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manipulating the first spin. Therefore our target is to maximise ||U40||.

As an illustrative example, we consider the case of ns = 3, which can be easily visualized. For this

case, the graph G contains 8 nodes and 24 edges, from which 8 are self-loops (see Figure 5.3 A).

Figure 5.3 displays the outcomes of optimizing 5.18 under similar norm losses on the pulse a(t) to

that used for the fluxonium. In this example, we set AI to be diagonal and form an XXZ spin

chain. The couplings are given by J i
xy(S

x
i S

x
i+1 + Sy

i S
y
i+1) + J i

zS
z
i S

z
i+1, with the coupling constants

J i
xy varying across each pairs and J i

z is kept to 1. The coupling J i
xy is chosen randomly from a

normal distribution with mean 1 MHz and standard deviation 0.1 MHz. A random example is

shown in Figure 5.3B,C with J0
xy = 1.005 MHz and J1

xy = 0.9215 MHz. The pulse’s total duration

is fixed at 5 µs. While not optimized, it is sufficiently lengthy to permit a viable solution. Figure

5.3B, C shows the expectation values and positions on the Bloch sphere for each qubit; though this

depiction does not show the entanglement between them, it shows the high-fidelity transfer to state

|001⟩.

5.4.3. Subspace Avoidance

This section highlights that Uji(ti, tj) is calculated from any initial time up to any final time within

the discretized period, as long as the end comes after the start (0 ≤ i ≤ nt, 0 ≤ j ≤ nt, and

i ≤ j). This capability allows tracking the entire system trajectory, enabling trajectory-dependent

loss functions. Additionally, it is helpful for tasks involving memory effects, especially in non-

Markovian systems, which this framework can simulate in vectorized form. For instance, it applies

to loss functions concerning two-time correlation functions [220]. We explored a simple example of

preventing unwanted transitions through subspace avoidance [221, 222].

In this case, we study a three-level system where a Qubit is stored in two energy levels |1⟩ and |2⟩

with energy ω1 and ω2 respectively (See Figure 5.4A). Those two levels are coupled through a laser

with frequency ωL detuned with the level of the state |2⟩ by δ2 = ω2−ωL. We assume an unintended

coupling to a third state |3⟩ with energy ω3. This state causes a quick loss of coherence and should be
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avoided. The Rabi frequency between state |1⟩ and |2⟩ is written as Ω12(t) = ΩR,12(t)+iΩI,12(t). We

represent the Rabi frequency between the first state and the unwanted state as being proportional

to Ω12(t), with a phase difference such that

Ω13(t) = βeiξΩ12(t), (5.20)

where ξ and β are real constants, with β << 1 to reflect its nature as a minor, undesired coupling.

The Hamiltonian is then given by

H(t) =
1

2


−δ2(t) Ω∗

12(t) βe−iξΩ∗
12(t)

Ω12(t) δ2(t) 0

βeiξΩ12(t) 0 −2∆ + δ2(t).

 (5.21)

The goal is to transition the population from state |1⟩ to |2⟩, quantifiable by ||U21(tf , t0)|| while

concurrently minimizing transfer to |3⟩ measured by

S3 = α

∫ tf

t0

∑
i∈1,2

⟨3| U(τ, t0) |i⟩ dτ. (5.22)

Figure 5.4B illustrates the outcomes of state transfer optimization, disregarding S3. It shows the

final state transfer as a function of the product t · ∆, indicative of task difficulty. At high ∆

values, state |2⟩ can be selectively targeted, avoiding the parasitic state. The inset in Figure

5.4B demonstrates that considering S3 across various α values results in a nearly constant final

population in state |3⟩ post-optimization. However, the transfer to the desired state takes a hit,

recovering early for the lowest α but requiring a longer control sequence for higher α (see Figure

5.4C). Longer control is the trade-off for reducing time in the noisy subspace, which diminishes

significantly when considering S3 (see Figure 5.4D). Avoiding the subspace substantially changes

the problem, affecting the control strategy and the minimum control time. These factors can be
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Figure 5.4: Full differentiability in time evolution: preventing subspace intrusion (A)

Energy level diagram of the three-level system, highlighting the undesired state and depicting various

couplings. (B) State transfer population between state |1⟩ and |2⟩ showing good transfer for t ·∆ >
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subspace loss. (D) Ration of subspace population with subspace loss normalized to transfer without

subspace loss.
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effectively addressed within this framework for more complex systems.

5.4.4. Creating a Measurement Scheme

In our concluding example, we integrate all components to create a sensing scheme based on a

Nitrogen-Vacancy (NV) center’s electronic spin (S=1). Sensing using NV centers can be imple-

mented in bulk diamonds, nanodiamonds, nanopillars, or cantilevers [223, 224]. These configura-

tions enable the sensing of electric and magnetic fields and the coupling with other spins for NMR

[225]. Diamonds can be easily functionalized and are safe for biological applications [172]. Drawing

inspiration from a recent study that employs the NV center for gauging the quadrupolar moment

of an adjacent nitrogen-14 (14N) spin (I=1) [2].

Our Hamiltonian is simplified relative to [2], yet captures the same dynamics:

Hθ(P, t) = ΩESz + γ⊥SzIx + PSzIz + θ(t)Hctrl. (5.23)

The Hamiltonian includes the NV Zeeman term, the NV-14N hyperfine coupling, the 14N’s quadrupo-

lar term, and the NV spin control. The control part of the Hamiltonian (Hctrl) addresses the

transition between the state |0⟩ and |1⟩ of the NV center and takes the form

Hctrl = ΩC


0 0 0

0 0 0.5

0 0.5 0

⊗ 1N14. (5.24)

The experiment begins by setting the NV center to the |0⟩ state while the nitrogen spin remains in

a thermal state (approximated here as completely mixed). The initial state ρinit is given by

ρinit =


0 0 0

0 0 0

0 0 1

⊗ 1

3


1 0 0

0 1 0

0 0 1

 . (5.25)
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The standard way to control this system is achieved through square pulses (in the most basic setup),

which rotate the NV center spin by either π/2 or π around the X-axis, the control axis, in the |0⟩

and |1⟩ subspace of the NV center. One of the control sequences, comprising these two types of

rotations, is known as CPMG ( θCP (t, τ)) [226] and is illustrated in Figure 5.5A. It consists of N

repetitions of a π pulse, each separated by a waiting period of duration τ , the only parameter for

the sequence. Two π/2 pulses sandwich this sequence, positioning the NV center in the XY plane

before the sequence and subsequently realigning it perpendicular to this plane for measurement

purposes. The outcome of the pulse sequence, measured right after the last π/2 pulse, is shown in

5.5C. When P ̸= 0 and τ are on resonance, the NV center does not return to its initial state after

the sequence. This is marked by significant peaks that become more pronounced as the number of

pulse repetitions increases [133]. Thus, this approach can serve as a measurement strategy where

the parameter τ is swept, and the positions of the peaks enable the determination of P .

We aim to replicate this approach by learning a one-parameter family of controls, denoted as θO(t, υ),

where υ serves as our one parameter, analogous to τ . However, we add stricter requirements that

are of use to the experimentalist. Firstly, our aim is for the resulting signal to present a single

peak, the center of which provides information about P . This differs from the CPMG sequence,

which produces multiple peaks, to simplify the analysis process. Secondly, we seek a fixed control

duration, unlike CPMG, which takes approximately 2τN seconds, excluding the much shorter π/2

and π pulses relative to the τ interval.

To accomplish this objective, we create a matrix Θ such that Θij = θO(tj , υi). Our goal is to learn

this matrix. Θ is of dimension nP ×nt, with nP representing the number of distinct pulse sequences

to be learned and nt indicating the time points, as previously described. We discretize the range of

P values into nP values to which the system should be sensitive, aligning this discretization with the

number of rows in the matrix Θ and ask for each control ΘO,i to uniquely respond to its associated

Pi.
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Figure 5.5: Designing a measurement scheme (A) NV center system with the electronic spin

(V) and the Nitrogen (N) in the diamond crystal lattice and the CPMG pulse sequence used in [2]

(B) Graph of the Hamiltonian showing the two unconnected subspace and the path considered (C)

(top) Signal captured via the CPMG pulse sequence during τ sweep, with and without a quadrupolar

term. (bottom) The contribution originates from the partial computation along the path illustrated

in (B). (D) (left) Control optimized for measuring P (right) signal detection based on the peak

within the pulse, centered along the υ = P axis. Each row represents a sweep akin to that in (C),

with the distinction that the single parameter is no longer time τ but υ, a learned dependency.

128



Establishing a loss function is necessary to optimize the discretized version of θ. This function can

be simplified by only studying a path that excites a transition caused by P that leads to measurable

outcomes. Identifying the path responsible for this effect is straightforward within our framework,

as it allows for the separate visualization of their impacts. Figure 5.5B highlights a path of interest

within the Hamiltonian graph, activated when the signal deviates from zero (see Figure 5.5C).

The partial U along this path is expressed as UP,θ
path(tf , ti). We will disregard the time variables in

subsequent references, as they remain constant for this problem.

This can be incorporated in a loss function of the form

Lmeas(Θ) =
∑
i

9||UPi,Θi

path ||+ 1

nP 9 1

∑
j,j ̸=i

||UPi,Θj

path ||

 . (5.26)

For an optimal Θ matrix, the first term of the sum would be maximized, showing that pulse i is

sensitive to Pi, whereas the second sum would be zero, demonstrating the pulse’s insensitivity to

any other P values. Additionally, we incorporate into the loss function the losses L1
a, L

1
da, and L1

d2a

to ensure smoothness, along with a term that guarantees that the control for each P varies smoothly

as P changes, as follows:

Lmeas(Θ) =
∑

i∈{0,...,nP−1},j

(Θi,j −Θi+1,j)
2 (5.27)

Figure 5.5D shows the learned map ϕ in the function of υ, which shows a highly structured pulse

sequence that is composed of mainly three frequencies (See Supplementary Material). The three

frequencies correspond to the three transitions in the path (refer to Supplementary Material). The

learned sequences are highly effective for measurement as demonstrated by the linear relationship

between P and υ with a precisely centered peak, shown in Figure 5.5.E.
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5.5. Discussion

In this paper, we introduced an implementation of a graph-based representation for the evolution

operator of a Hamiltonian in discrete space. This approach enables the automated gradient to

flow seamlessly. Furthermore, we demonstrated that the method permits an in-depth study of each

path’s impact on the evolution operator. We exemplified the method’s accuracy through several

examples specifically designed to highlight a particular attribute of the approach.

This method can be used in scenarios of low-coupling, such as a spin interacting with a large bath,

where the bath’s state over time is not required to be precisely known [227, 194]. It could be

applied to optimizing decoupling pulse sequences to limit bath-caused decoherence, representing

the method’s next logical progression. This is due to the method’s resemblance to the perturbative

diagrammatic expansion approach, which utilizes specific paths in the Hamiltonian to calculate

the dynamics’ properties. The principal methods going in this direction include the linked cluster

expansion (LCE) [193, 228] and the correlated cluster expansion (CCE) [229, 194]. Both methods

employ Feynman-like diagrams within a finite space, where the LCE approach details the summation

of all possible diagrams—a highly laborious task—while the CCE method provides a more structured

approach to summing, addressing a series of LCE diagrams in a single effort [194]. The approach

introduced here is comparable to handling a series of LCE diagrams in CCE fashion but incorporates

loops via the Green function, enabling the summation of an even greater number of diagrams in a

single step. As demonstrated in the final example, this technique is also valuable for investigating

causality and determining which paths are crucial.

Although we do not claim this method to be the ultimate in accuracy, it delivers commendable

results with a notably low number of points. This contrasts with iterative methods, where the

evolution operator is applied repeatedly [230, 231, 232, 233]. Although the computational tree is

significantly more complex to generate than those methods, it enables tracking the dependency of

parameters at each timestep, a task challenging to achieve with another scheme. This benefit comes
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with the drawback of some inefficiency, as managing the exponential complexity arising from path

computation becomes unfeasible without a suitable strategy. It is important to highlight that none

of the examples discussed in this paper fall within this regime. However, removing paths becomes

necessary with as few as six spins in the chain. Although the automated techniques we introduced

suffice for such scenarios, a human-guided approach that considers the system’s specificity may

be essential for more complex systems. An enhanced framework could be implemented, drawing

inspiration from dynamic computation graph research [234]. This framework would dynamically

tailor computation paths (specifically, the diverse paths and cycles in the Hamiltonian) for each

input, directing computational power toward the input data’s most significant aspects. Matrix

factorization techniques tailored for the Volterra product could be employed, akin to the Low-rank

Factorization methods utilized in Deep Learning [235].

Finally, it is worth noting that this method has applications beyond quantum mechanics, as it

fundamentally involves computing time-ordered exponentials, a concept not exclusive to this field.

Time-ordered exponentials are utilized across various domains, as linear time-dependent dynamical

systems are ubiquitous. Among the most unexpected applications are finance, where time-dependent

fractional dynamics are studied [236], biology, which employs Markov Chains [237], and computer

science, where methods for compressing temporal networks are developed [238]. Although other

solvers have been employed in various applications where control was neither attempted nor neces-

sary, we contend that examining the specific paths and cycles that generate the effects of interest

in these cases could provide insightful revelations.
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CHAPTER 6

CONCLUDING REMARKS

This thesis explored the concept of dynamic systems, which model how different systems evolve over

time in Chapter 1. This includes systems ranging from non-linear discrete and stochastic classical

systems to more complex quantum systems. Chapter 2 investigates Boolean networks as a model

for understanding biological systems, particularly gene regulation. We identify how the topology

of interaction networks influences the emergence of long-limit cycles, which are critical for biolog-

ical functions. The study demonstrates that specific network configurations lead to predictable,

stable, dynamic behaviors. This insight is crucial for designing synthetic biological circuits and

understanding pathological conditions like cancer.

Chapter 3 introduces the concept of mechanical prions, which exhibit two stable states similar to

biological prions. The research shows how these mechanical systems can be designed to remain

stable under random perturbation yet collapse into a single stable state when necessary. This work

provides a novel perspective on designing mechanical systems that mimic biological processes, with

potential applications in materials science and nanotechnology.

Chapters 4 and 5 shift focus to quantum systems, particularly the control and design of quantum

mechanical systems. The research highlights how quantum states can be manipulated and controlled,

particularly in spin dynamics in diamond NV centers. The findings underscore the importance of

precise control in quantum systems for quantum computing and sensing applications. The thesis

also presents a new framework for learning control sequences in quantum systems, which could lead

to more efficient and robust quantum technologies.

We explored the distinction and interplay between designing systems to achieve desired outcomes

and controlling systems in real-time to guide them toward specific goals. This is examined across
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various types of systems—from Boolean networks inherently designed to reach specific attractors

to quantum systems where precise control sequences are essential for maintaining coherence and

achieving desired quantum states. The work underscores that while design involves setting initial

conditions and system parameters to guide the system’s evolution naturally, control requires active

intervention, such as applying external forces or adjusting system parameters dynamically.

6.1. Future Directions

The integration of classical and quantum mechanics concepts and the design versus control frame-

work is not limited to a single field but is applicable across various scientific and engineering dis-

ciplines. The study of Boolean networks within this thesis opens new avenues for exploring more

complex biological systems. Future research could focus on expanding these models to include

multi-layered networks that account for additional biological complexities, such as epigenetic fac-

tors. More complex Boolean models beyond the threshold limit could be analyzed. Although these

models may complicate the definition of topology and the binarization of edges, they offer the advan-

tage of greater realism. Additionally, continuous models could be explored, potentially addressing

some of the challenges posed by the discrete nonlinearities encountered in this study.

The study also paves the way for designing systems that inherently perform specific tasks without

the need for external control. This approach was applied in Chapter 3 to develop a mechanical

analog to prions. The same framework can be extended to develop more advanced self-assembling

materials and nanostructures. In this research, the dynamics depended on a single factor, the tem-

perature, which we cannot control. However, it is conceivable to introduce an additional controllable

parameter, such as a magnetic or electric field, that could reset the prion process. Future research

could investigate how these principles could be applied to design materials with programmable

stability capable of self-repair or transformation under specific conditions.

An intriguing question arises when considering prion-like systems in the context of quantum me-

chanics and systems presented in Chapter 4 and Chapter 5. Quantum systems evolve unitarily,
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meaning no information is lost during their evolution. This presents a challenge because, in prionic

propagation, a significant portion of the state space must collapse into a specific subset of states.

This process inherently involves deleting information and breaking the quantum system’s unitarity.

However, it is possible to build such a system when considering non-unitary dynamics that appear

when it interacts with a bath, similar to the classical case. Therefore, a prionic quantum system

could be constructed, although its practical application remains unclear.

Another fascinating direction of inquiry that combines these two projects is the creation of dynamic

prions. In the presented prions, their prionic or healthy type is determined by their conformation.

However, we could conceptualize these two stable states as dynamical limit cycles similar to those

observed in the Boolean systems we studied. In this scenario, for example, the prionic system could

be a non-oscillating oscillator, while the healthy one could oscillate at a specific frequency. The

non-oscillating state could then propagate through interactions with the oscillating one, offering a

novel way to explore dynamic state transitions in prionic systems.

The work on quantum control, particularly in the context of NV centers in diamond, lays the

groundwork for more advanced quantum sensing and quantum computing applications. The pre-

sented framework for designing sensing systems applies to a broad class of systems. Moreover, the

accompanying simulation tool enables the learning of a Hamiltonian through a feedback loop with

the experimental setup, allowing for real-time adjustments and optimizing the system’s performance.

This is achievable with this framework because there is no distinction between the Hamiltonian and

the control; both are treated as inputs. This approach allows simultaneous simulation of the dy-

namics, optimization of the best input based on the current knowledge of the Hamiltonian, and

execution of the most informative experiment to update the Hamiltonian based on simulated and

observed results.
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